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Abstract

Coaching is a relationship where one agent provides advice to another about how to act.
This thesis explores a range of problems faced by an automated coach agent in providing
advice to one or more automated advice-receiving agents. The coach’s job is to help the
agents perform as well as possible in their environment. We identify and address a set of
technical challenges: How can the coach learn and use models of the environment? How
should advice be adapted to the peculiarities of the advice receivers? How can opponents
be modeled, and how can those models be used? How should advice be represented to be
effectively used by a team? This thesis serves both to define the coaching problem and
explore solutions to the challenges posed.

This thesis is inspired by a simulated robot soccer environment with a coach agent who
can provide advice to a team in a standard language. This author developed, in collabora-
tion with others, this coach environment and standard language as the thesis progressed.
The experiments in this thesis represent the largest known empirical study in the simulated
robot soccer environment. A predator-prey domain and and a moving maze environment
are used for additional experimentation. All algorithms are implemented in at least one of
these environments and empirical validation is performed.

In addition to the coach problem formulation and decompositions, the thesis makes
several main technical contributions: (i) Several opponent model representations with as-
sociated learning algorithms, whose effectiveness in the robot soccer domain is demon-
strated. (ii) A study of the effects and need for coach learning under various limitations of
the advice receiver and communication bandwidth. (iii) The Multi-Agent Simple Tempo-
ral Network, a multi-agent plan representation which is refinement of a Simple Temporal
Network, with an associated distributed plan execution algorithm. (iv) Algorithms for
learning an abstract Markov Decision Process from external observations, a given state
abstraction, and partial abstract action templates. The use of the learned MDP for advice
is explored in various scenarios.
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Chapter 1

Introduction

Multi-agent systems are increasingly becoming both more important and more complex.
As the breadth, size, and importance of these systems grow, a better understanding of the
various relationships between agents will be needed in order to design the most effective
systems. This thesis considers one such relationship which has only recently begun to
receive much attention: one agent acting as a coach for other agents.

1.1 Defining Coaching

While the word “coaching” is deliberately used to create associations with the rich human
interactions with which we are familiar, we first clarify how coaching is defined and used
in this thesis. We consider the primary properties of an agent coaching agents environment
to be:

External, observing coachThe coach is external to the team of agents performing in
the environment. In particular, the coach’s only effect on the environment is to
communicate advice to the team of agents which are performing actions. In other
words, the coach has no direct effect on the state of the environment. We assume
that the agents are maintaining an internal state which is not accessible to either the
other agents or the coach. This internal state can be affected by the advice of the
coach, but the coach can not directly observe this effect. Further, we assume that the
coach is able to observe (at least partially) the evolution of the environment in order
to understand and evaluate the agents. In some cases, the coach can use observations
to infer part of the internal state of the agents, but the coach can not directly observe

1
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that internal state.

Advice, not control The coach providesadviceto the agents, and it does not control them.
We assume advice recommends an action, a macro-action, or a set of goal states. The
agents have some freedom to interpret the advice, and this interpretation will not be
knowna priori by the coach. Allowing advice interpretation is important because:

• Communication bandwidth restricts how specific advice can be. If the coach
had infinite bandwidth with the receiver, the coach could explain its full under-
standing of the environment with all the good advice, exceptions to the advice,
exceptions to the exceptions, ad nauseam. Advice in this thesis usually has
the form of "In these states, do/don’t do these actions." Indeed, if we consider
"these states" to be an abstract state, we know that combining states which
have similar, but not exactly the same, optimal actions can be more efficient
for an agent to reason about [Dearden and Boutilier, 1997].

• Past research has suggested that in some cases the best performance can be
obtained by an advice receiver only if it is able to refine advice [Maclin and
Shavlik, 1996]. Indeed, with a coach agent that is not able to observe the
internal state of the agents, advice will generally be abstract. Abstract advice
creates a need for agents to refine and interpret the advice. By allowing agents
to ignore some parts of the advice, we allow the agents to refine the advice
given.

Access to past behavior logsOne important task for coaching in human environments is
the processing of past experience (or recordings of others’ experiences) in order to
provide information or insight to the advice receivers. This capability has a natural
analogue in the agent coaching agents scenario and is one of the primary sources of
information for our coach. Throughout the thesis, the coach will be analyzing logs
of state transitions (in almost all cases without any information about the actions
performed) in order to create various models.

Advice at execution, not training One task often performed by human coaches is to set
up instructive training scenarios. Similarly, in many agent systems, the designers set
up sub-tasks for learning by the agents before moving on the full task [Stone, 2000].
While creating such training scenarios may be an interesting task for a automated
agent, it is not considered in this thesis in order to constrain the scope. The coach
is providing advice about the execution of the task, not creating or providing advice
for training scenarios.
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Team goals One or more agents in the environment act to achieve given rewards. These
rewards are team rewards which are the same for all agents on a team. The coach can
therefore reason about one reward function for the team without having to consider
interactions between differing goals. Environments with other agents are considered
in this thesis, and in those environments the coach reasons about the behavior of the
other agents but not about their goals.

For a coach in an environment with the properties above, the coaching problem is
to provide advice to agents to improve their performance on the task. We present our
decomposition of the overall coaching problem into sub-problems in Section 1.2.

Part of this thesis is in fact defining coaching for agent systems in an interesting way.
In summary, our coach agents are external to the team they are coaching, provide advice
to improve task execution, analyze logs of past behavior, and work with teams with shared
rewards. While future research may want to broaden or narrow this definition of coaching,
these properties specify the coaching problem for this thesis.

Part of the coaching problem is analyzing the past executions of agents. Control rule
learning [e.g., Minton, 1988] and chunking [e.g., Laird et al., 1986b] also analyze execu-
tion traces in order to help a problem-solver perform better in the future. In this sense,
control learning is similar to the coaching problem as addressed in this thesis. However,
the robot-soccer-inspired coaching problem goes beyond control learning because the ex-
ternal nature of the coach allows for abstract advice to be generated without full knowledge
of the internals of the advice receivers. This abstract advice can be operationalized by dif-
ferent types of agents.

Coaching brings together a number of different problem areas from AI. Intelligent Tu-
toring Systems (ITS) [e.g., Polson and Richardson, 1988] teach human students a task or
skill such as reading or math. While they have similar inputs and outputs to our coach
agents, these systems have important differences. ITSs are specialized to humans and they
are generally used in environments where a complete and correct model of expert perfor-
mance is available. Research in agent modeling [e.g., Carmel and Markovitch, 1998] aims
to construct and use models of agent behavior based on observations. Advice generation
is another use of such models. Using Markov Decision Processes as models of an envi-
ronment for learning optimal action policies has been a fruitful technique [e.g., Puterman,
1994]. We will draw on this past work in creating models to be used by the coach in
generating advice. Teamwork models such as STEAM [Tambe, 1997] define structured
responsibilities and communication among agents in a team. While such models can de-
fine various leader roles, this thesis goes further in defining how a coach agent should act
towards the rest of the team.



4 CHAPTER 1. INTRODUCTION

Combining these different ideas and areas provides fertile ground for exploring the
properties of each. We draw on all of these areas to address the interesting and challenging
problem of coaching.

1.2 Thesis Approach

Given the definition of the coaching problem, we can now state the thesis question:

Thesis Question: What algorithms can be used by an automated coach agent to
provide advice to one or more agents in order to improve their performance?

The reader should note that the thesis question doesnot ask about the algorithms used
by the advice receivers. While we have naturally had to address this question somewhat
in order to do this thesis work (see especially Chapter 3, Section 6.2, and Carpenter et al.
[2003]), this thesis focuses mainly on how advice is generated.

The coaching problem has a number of different sub-problems. This thesis serves
to better define and break down the problems addressed. Through our insights into the
various sub-problems, we open up future work in all areas.

In short, we break the overall thesis question into several sub-questions.

• How does the coach gain knowledge from observations and behavior logs?

The coach processes observations of the environment and/or the agents to produce
advice. These observations must have sufficient information to allow the coach to
learn. Our coach learns models of teammate and opponent agents as well as models
of the environment.

• How can models learned from observation be used to determine desired actions for
agents?

A model by itself does not produce advice. Rather, the coach must use the model
to determine some desired ways of acting for the agents. These action policies can
then be translated to advice. We answer this question in a variety of ways, including
planning a response to predicted opponent actions, imitating other successful agents,
and solving for a universal plan.

• Once the coach has desired actions for the team, how does the coach adapt advice to
the agent abilities?

Ideally, a coach should be able to work with a variety of agents with different abili-
ties. Especially as the complexity of an environment grows, agents can be more or
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less effective at various tasks given physical or behavioral differences. We explore
how a coach can learn about the advice receiving agents in order to provide the most
effective advice.

• What format does advice take?

The advice language constrains what kind of advice the coach can give and is con-
sequently an important choice in the design of a system with a coach. In addition to
using the standard advice language of the simulated robot soccer environment, we
introduce a plan representation for use by distributed agents to perform coordinated
execution.

Figure 1.1 overviews the entire approach contributed in this thesis. The figure shows
the main building blocks and the chapters which address each. This figure represents the
integration of the thesis at the conceptual level, as not all subsystems are integrated into
one agent.

The coach’s overall inputs and outputs are exactly as defined in the problem statement
above (Section 1.1). Namely, the only output from the coach is advice to the agents and
the inputs are observations from the environment and logs of past behavior.

Then, there are two primary paths to producing advice. One path deals with learning
and using models of the environment. From logs of past behavior, the coach learns a model
that captures not only the physical processes of the environment, but also the effects of the
possible actions of the agents. This learning is done from logs that are series of states and
do not include information about the actions performed (which are not directly observable
by the external coach). Based on this model, the coach can solve for optimal policies.
The coach then has a set of desired behaviors for the agents. This process is described in
Chapter 4.

The other path deals with understanding particular opponents. Where the environment
model intends to capture all the possible actions and processes in the environment, oppo-
nent models are intended to capture how particular opponent agents behave. The models
are either given by an expert (as in Section 5.1) or learned from past observation data (as
in Section 5.2). If the opponent is known, the appropriate opponent model can simply be
used. Otherwise, the coach can use the current observations to select one of the opponent
models from a given set (see Section 5.1.2). Online, model selection is done instead of
model learning because there may not be enough data to learn a new model from scratch.

In some cases, using the opponent model is easy. If you are playing tag1 and you

1The game of “tag,” also known as catching, caçadinhas, and many other names, is a typical children’s
game. One person who is "it" runs around trying to touch, or "tag" someone who then becomes "it."
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know your opponent always turns left instead of right, it is easy to decide what to do.
In other cases, significant computational effort must be applied to determine how to best
respond to the predicted actions of the opponent. We present one planning approach to
taking advantage of the opponent’s predicted behavior (Section 6.3). As in the other path
of Figure 1.1, the coach computes desired behaviors for the agents.

Given these desired behaviors, the coach must then consider how to best get the agents
to behave as desired. The agents may have limitations that are unknown to the coach or
the agents may be more or less effective at performing the actions suggested by the coach.
The coach constructs and uses models of the agents receiving the advice in order to adapt
the advice given. In Chapter 3, we present learning algorithms for the coach to do this
adaptation.

At this point, the coach still has to express the advice in a language that the agents
understand. This advice formatting step may be trivial if the output from the earlier pro-
cesses closely matches the format of the advice language. However, the coach can encode
additional information in the advice to make it easier for the agents to operationalize. This
encoding can be especially useful when the advice is to be used by multiple agents simul-
taneously. This thesis introduces one representation for advice to be used by distributed
agents, as well as algorithms to produce such advice. The representation and execution
and generation algorithms are described in Chapter 6.

To this point, this overview has highlighted one dimension along which our various
coaching algorithms vary, namely the source of advice. Several other important dimen-
sions for describing coaching algorithms in this thesis:

Online vs. offline learning A coach can study past executions or environment models in
order to produce advice for the agents. Alternatively, the coach could observe the
agents’ actual execution and provide advice as seems necessary to improve the per-
formance while it is going on. The learning of environment models (Chapter 4) and
the opponent team models (Section 5.2) exclusively use offline learning. The adapta-
tion to advice receivers (Chapter 3), the selection of opponent models (Section 5.1),
and the planning response (Section 6.3) are all performed online.

One-time vs. occasional vs. continual adviceThis dimension expresses how often the
coach provides advice to the agents. The offline learning techniques all produce
advice which is given to the receivers at the beginning of execution. In the agent
adaptation learning (Chapter 3), we explore both continual and occasional advice.
The planning (Chapter 6) using matched opponent models (Section 5.1) provides
occasional advice.
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Advice as actions vs. macro-actions vs. plansWe use several different advice represen-
tations in this thesis. In the adaptation to advice receivers (Chapter 3), the advice
takes the form of recommended base level actions. In the planning (Chapter 6),
sequences of coordinated movements are provided to the team as advice. In all
other work, we use the CLang advice language (described in Section 2.2.2), where
the recommended actions are macro-actions that take several steps for the agents to
implement.

We use several experimental environments throughout the thesis. We use some en-
vironments to isolate our sub-questions for more thorough study. The full details of all
environments can be found in Chapter 2, but briefly, the environments are:

Predator-Prey We use this grid-based world with a single advice receiving agent to ex-
plore how a coach can adapt its advice to the abilities of the advice receiving agent.

Simulated Robot SoccerExperiments in the full game address all of the sub-questions
above except learning about and adapting to the advice receivers. We also construct
a sub-game to study the learning of environment models.

RCSSMaze We created this maze environment with dynamic walls to investigate the
learning of environment models and clearly demonstrate the impact of the coach’s
advice.

1.3 Contributions

In addition to defining and decomposing the coaching problem as discussed above, this
thesis makes several technical contributions:

• Several opponent model representations, learning algorithms for those models, and
advice generation algorithms using those models. The use of these models is exper-
imentally shown in a robot soccer domain. (Chapter 5)

• An empirical study of adapting advice in a predator-prey environment. Variations
in the abilities of the advice receivers and the communication bandwidth are also
explored. (Chapter 3)

• Multi-Agent Simple Temporal Networks (MASTNs): A novel multi-agent plan rep-
resentation and accompanying execution algorithm. MASTNs are one answer to the
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question of how advice should be structured so that it can be used efficiently by the
receiving agents. (Chapter 6)

• An algorithm for learning an abstract Markov Decision Process from external obser-
vations, a given state abstraction, and partial abstract action templates. The learning
and use are experimentally explored in a variety of scenarios. (Chapter 4)

• Largest empirical study of coaching in simulated robot soccer. (Chapters 4, 5, and 6)

1.4 Coaching in Other Domains

Since much of this thesis presents coaching techniques in the context of particular do-
mains, especially simulated robot soccer, we would like to provides examples of how
coaching could be applied in other domains. The coaching questions we present are more
general than the domains presented in the thesis. Therefore, in this section we discuss how
coaching could be applied to two other domains: the DARPA SDR Indoor Reconnaissance
Demonstration [DARPA, 2002] and RoboCup Rescue [RoboCup Rescue].

1.4.1 Indoor Reconnaissance

The Defense Advanced Research Project Agency (DARPA) set out a challenge to use
100 robots semi-autonomously in an indoor environment to perform mapping, search, and
intruder detection [DARPA, 2002]. This description of the problem and how coaching
could be applied is based on the Centibots from SRI [Konolige et al., 2004].

There are three phases to the problem. In the first, a small number (1–3) of robots are
placed in the previously unknown indoor environment. They are required to autonomously
map the environment and are evaluated both on speed and accuracy of the resulting map.
This map is then used for the subsequent phases.

In the second phase, a large number of robots (approximately 100) are used to locate
a prespecified object of interest (OOI) which can be distinguished by its shape and color.
The goal is to minimize both the time to find the OOI and the number of false positives.

In the last phase, the robots are required to guard the OOI and report when and if
human intruders enter the space. A single human operator outside of the space to be
guarded can interact with the robot team. There are two tasks in this phase: establishing a
communication backbone and performing the sentry operations. The robots can only com-
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municate with nearby robots, so a communication backbone is needed so that all robots
can communicate with each other, especially when an intrusion is detected.

The simultaneous localization and mapping problem for phase one is a well established
and studied problem, so we will instead focus on phases two and three.

First we consider the search problem of phase two. A software coach agent could exist
on a computer in the central command also occupied by the single human operator. Given
that the robots already maintain a communication backbone to keep the operator up to date
on what is going on, the coach could use observation data supplied by the robots.

To see how coaching could be applied to this problem, we consider the four coaching
sub-questions given above:

• How does the coach gain knowledge from observations and behavior logs?

This question implicitly asks what form observations take. For this task, the coach
will be interested in both possible locations of the OOI and areas which have been
explored by each robot. From this information and the map constructed, the coach
should be able to construct a model of the environment which consists of how well
or how many times various areas have been scanned for the OOI. In order words,
the coach could serve to merge the information provided by the distributed agents.

In order to accomplish this, the coach will also need to have models of the sensa-
tion and action capabilities of the agents. If the higher level actions of the robots,
such as scanning in a circle and detecting an object are fixed, the coach will still
need to model the effectiveness of these actions in order to determine how well the
environment has been scanned.

• How can models learned from observation be used to determine desired actions for
agents?

The Centibots implementation already includes a spatial reasoner and dispatcher
to try to efficiently calculate spatial assignments for the robots. A crucial part of
this reasoning is a set of cost functions and associated weights. The coach’s model
of how much and how thoroughly the various parts of the environment have been
explored could be used to adjust these weights or cost functions as exploration hap-
pens.

• Once the coach has desired actions for the team, how does the coach adapt advice to
the agent abilities?

An important issue with so many robots is dealing with failures. The probability of
no failures decreases exponentially with the number of robots and further, a robot
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may not even be aware when it is failing. If the coach is constructing models of
the action efficacy of the robots, as suggested by the first question above, deviations
from the expected behavior given by these models could be used to detect oncoming
or current robot failures.

Further, if the robots are heterogeneous, and especially if they are designed or cre-
ated by different groups then it will be important for a coach to understand the
differences between the robots. The heterogeneous robots may move with different
speeds and have different detection abilities.

• What format does advice take?

The coach can indicate positions or areas of the map for each of the robots, or groups
to robots, to explore. Since all robots are assumed to have the global map (from
phase one) and properly localize, the coach can communicate in global coordinates
on the shared map. This information could alternatively be processed by the spatial
reasoner and dispatcher to modify the cost functions (as discussed in the second
question above).

Now consider the intrusion detection problem of phase three. This problem is an even
better match for coaching as described in this thesis as there exists an adversary (the in-
truder) that the team must deal with.

• How does the coach gain knowledge from observations and behavior logs?

The Centibots implementation performs the sentry operation by spreading out the
robots to monitor as much of the space as possible. However, this approach leaves
significant room for improvement by modeling and prediction of possible locations
and routes of the intruder. These models would predict, probabilistically, how and
where the intruder would move through the space. If the robot sentries provide infor-
mation to the coach about the areas monitored, the coach can effectively accumulate
this information to understand the global monitoring situation.

• How can models learned from observation be used to determine desired actions for
agents?

A set of possible opponent models could be given to or learned by the system (sim-
ilar to what is done in Section 5.1). Monitoring efforts could then be focused on
likely positions from what is considered the most likely model or by using all mod-
els simultaneously.

In addition, if the intruder is responding to the positions of the robots (as seems
likely), it may be possible to plan a response (such as in Section 6.3) that effectively
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leads the intruder into an area where detection is almost certain. For example, if
monitoring robots leave an area, the intruder may be more likely to move into this
space to attempt to escape detection. Additional monitors could them be deployed
in the correct area.

• Once the coach has desired actions for the team, how does the coach adapt advice to
the agent abilities?

This question has a similar answer as in phase two. The coach can construct models
of agents which predict the efficacy of the actions. Violated predictions can mean a
robot failure and better working robots can be deployed at more important locations.
Further, as described above, models of teammate robots will be important as the
team becomes more heterogeneous.

• What format does advice take?

As should be clear at this point, the coach will be recommending areas to be mon-
itored more or less by the robots. The spatial reasoner can interpret this advice as
changes in weights for different areas.

1.4.2 RoboCup Rescue

RoboCup Rescue [RoboCup Rescue] is an international research project to promote the
study of large heterogeneous teams in the socially important task of disaster rescue. This
section considers the simulation system of RoboCup Rescue as an agent environment that
could benefit from coaching. This discussion of the structure of the environment is drawn
primarily from Morimoto [2002].

The RoboCup Rescue simulation environment simulates a city area after an earth-
quake. Buildings are collapsing, fires are starting and spreading, and civilians are buried,
injured, and fleeing. There are three primary types of agents:

Ambulance These agents control an ambulance which is able to unbury people and carry
them to rescue centers where they can be healed. The ambulance agents can broad-
cast communicate with each other and are coordinated by an ambulance center.

Fire Fighters These agents can extinguish fires, though it is possible that once a fire has
gotten large, it will be more difficult or impossible for fire fighting agents to put it
out. The fire fighting agents can broadcast communicate with each other and are
coordinated by a fire station.
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Police Police agents are responsible for clearing wreckage on a road. They can broadcast
communicate with each other and are coordinated by a police office.

In addition, the three coordination centers can communicate with each other. The
agents’ goal is to reduce both loss of human life and destruction to the city.

To see how coaching could be applied to this problem, we consider the four coaching
sub-questions given above.

• How does the coach gain knowledge from observations and behavior logs?

One of the most important problems in the domain is the allocation of rescue agents
to the various problems in the disaster scenarios. An important component of this
reasoning could be abstract models of the effectiveness of agent(s) in addressing
particular problems. For example, how many firefighters would be needed to put
out a particular fire? How long would it take to clear a road given some number of
policemen? How long will it take to get from point A to point B given the road and
crowd situation? Such abstract models of the environment (including possible agent
actions) are exactly what are learned in Chapter 4.

• How can models learned from observation be used to determine desired actions for
agents?

Using the abstract models above, the coach agent will still need to search for a good
agent to task allocation. As part of the search process, the models can be used to
predict future world and agent states.

• Once the coach has desired actions for the team, how does the coach adapt advice to
the agent abilities?

For most of the agents, the action space is fairly simple. The road clearing and rescue
(i.e. unbury) actions, for example, take no parameters besides what road/human to
act on. This means that there is probably little variation in the abilities of the agents
to perform this task. However, the fire fighters have significantly more variation
in the action space, having to choose how many hoses, how much water, and what
angle to use. It the fire fighting agents are heterogeneous, the coach agent could
usefully learn about the effectiveness of the various agents and assign agent to the
fires for which they would be most effective.

• What format does advice take?

The coach will be providing advice about which areas or disasters (collapsed build-
ings, fires, and road blockages) are most important to deal with. Additionally, the
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coach may need to provide coordinated plans for multiple agents (similar to the ones
in Section 6.2) if there are important dependencies. For example, the fire fighters
may need to move to a road at the same time that the police clear it.

1.4.3 Summary

This section has discussed how some of the coaching ideas discussed later in the the-
sis could be applied to two other domains, indoor reconnaissance and RoboCup Rescue.
While different model representations and uses were suggested for the different problems,
the idea of a coach analyzing the observations of the world to provide advice to be inter-
preted by the agents fit into both of the domains.

1.5 Document Outline

This section briefly summarizes the content of each of the following chapters.

Chapter 2 presents technical details of all of the domains used in the thesis and discusses
the relevant properties of each, along with their differences. This chapter includes a
brief discussion of the CLang advice language used in much of the thesis.

Chapter 3 discusses a number of algorithms for a coach to learn about the limitations of
an advice receiving agent. A thorough empirical study in a predator-prey domain
explores the use of different learning algorithms, agent limitations, and communica-
tion bandwidth.

Chapter 4 presents a set of algorithms to learn a model of an environment from observed
state traces. The model is used to generate advice and is empirically tested in several
variants of simulated robot soccer and in our own maze environment.

Chapter 5 discusses how opponent models can be learned and used to provide advice to
agents. Experimental results in simulated robot soccer are shown.

Chapter 6 introduces Multi-Agent Simple Temporal Networks, a plan representation for
distributed execution, and an associated plan execution algorithm. Empirical results
are shown in simulated robot soccer.

Chapter 7 discusses the relation of this thesis to previous work in a number of different
areas.
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Chapter 8 concludes and provides directions for future work.

Appendix A gives additional details of the the CLang, the standard coach language for the
simulated robot soccer community. Several extended examples are also presented.
CLang is used as the advice language for much of the thesis.

Appendix B presents details of the action templates needed for the environment model
learning in Chapter 4. The action templates for both simulated robot soccer and our
maze environment are presented.

Appendix C gives details on getting the source code and data files from the thesis.

Appendix D presents our preliminary work on formal models of coaching.
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Chapter 2

Environments

A variety of environments were used for both development and empirical validation of the
techniques discussed in this thesis. This chapter discusses the relevant technical details of
all of the domains used. The primary purpose of this chapter is to situate the environments
in the context of why we used them.

Environments of varying complexity are needed to demonstrate and explore the prop-
erties of the various coaching algorithms presented. The first environment we discuss is
a predator-prey environment. Because this environment is small enough that all optimal
policies can be found and fully described, it allows for very thorough experimentation.

On the opposite end of the complexity spectrum is a simulated robot soccer environ-
ment, which is the main motivating environment for the thesis. A large community works
in this rich, multi-agent, adversarial environment. Coach competitions have been run at the
annual international RoboCup events since 2001 and teams are increasingly considering
how to use a coach to improve their performance.

Lastly, we have a maze environment, called RCSSMaze, which we created. It preserves
some of the complexity of the full soccer environment while allowing us to better control
the environment and remove some of the unknowns. This control allows us to run more
controlled experiments.

Table 2.1 summarizes some of the relevant properties of these environments. These
properties will be further explained in the following sections.

17
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Predator-Prey Simulated Soccer RCSSMaze
States and actions discrete continuous continuous
Observability full partial partial
Multi-Agent/Adversarial no yes no
Level of advice actions lowest level macro-actions macro-actions
Optimal policy known yes no probably
Advice frequency variable periodic one time
Limited agent(s) Yes, known Yes, but unknown Yes, but unknown

Table 2.1: Properties of the environments used in the thesis

2.1 Predator-Prey

State and action spaces: discrete
Observability : full
Multi-Agent/Adversarial : no
Level of advice actions : lowest level actions
Optimal policy known : yes
Advice frequency : variable (and configurable)
Limited agent(s) : Yes, and known exactly

The simplest environment we use is a version of the classic predator-prey. The simu-
lation is built upon the SPADES simulation system [Riley and Riley, 2003, Riley, 2003],
which provides a basic event based simulation framework. One predator and two prey
agents move on a discrete 6x6 grid world. The agents have 5 actions: stay still, move
north, south, east, or west. There are virtual walls on the outside of the grid so if an agent
tries to move outside the grid, it stays where it is. An example of a world state and the
possible actions is shown in Figure 2.1. The rabbits represent prey and the robot represents
the predator.

The predator agent’s goal is to capture at least one prey by being on the same square
as it. The world is discrete, all agents have a global view of the world, and all moves
take place simultaneously. Throughout our experiments, the coach’s job is to advise the
predator agent. Advice will be in the form of a recommended action, either to perform
right now or at a given state in the future.

The actions of each agent are deterministic. If the predator uses the north action, it
will always move north one square. However, the prey move randomly and therefore
act as randomizers for the world, rather than learning agents which need to be handled.
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Figure 2.1: An example state in the predator-prey environment. The rabbits represent prey
and the robot represents the predator. The arrows represent the possible actions (and their
effects).

Therefore, when considering only the actions taken by the predator, the environment is
non-deterministic.

The world operates episodically, with an episode ending when at least one prey is
captured; the predator can simultaneously capture both prey if all three agents occupy the
same square. The predator and coach receive a reward of 100 for each prey captured and a
reward of -1 every step that is taken. The predator tries to maximize undiscounted reward
per episode.

The state space of the world is363 = 46656 (the predator location, prey 1 location,
prey 2 location), though any state which is a capture for the predator (2556 states) has no
actions so no learning need take place. After a capture, all agents are placed randomly on
the grid.

Because of the size of the environment, standard exact MDP solving techniques can
be used [Puterman, 1994]. Approximately 20% of the states in this environment have
multiple optimal actions. The optimal average reward per step is approximately 17, which
means on average between 5 and 6 steps to capture a prey. Note that since future rewards
are not discounted and when computing values we only consider rewards in this episode,
the average reward per step reflects the value of a policy.
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Knowing exactly the optimal policies allow us to do thorough experimentation and
know exactly how close to optimal we are getting. Further, we can impose limitations on
the agent and know exactly what effect those limitations will have on the optimal policies.
These properties make this environment a good one to study issues of the coach adapting
to the advice receiver.

2.2 Simulated Robot Soccer

State and action spaces: continuous
Observability : partial
Multi-Agent/Adversarial : yes
Level of advice actions : macro-actions
Optimal policy known : no
Advice frequency : periodic
Limited agent(s) : Yes, and limits unknown

The Soccer Server System [Noda et al., 1998] as used in RoboCup [Kitano et al.,
1997, RoboCup] is the primary experimental domain for this thesis. This simulated robot
soccer environment is a rich, multi-agent, adversarial environment. It is a compelling
environment for the study of coaching for two reasons. First, a large number of teams have
been created by a variety of research groups, giving considerable breadth to the strategy
space in use by teams. Second, the CLang advice language was created by the community
(including myself) as a standard language so that coaches could effectively talk to and
work with teams from other research groups.

The size and complexity make this a challenging yet appealing environment for the
coach. Much of the work in this thesis uses this domain. The learning and use of both
environment and agent models in a variety of ways will be explained in the later chapters.

For additional information besides what is contained in this section, see the Soccer
Server Manual [Chen et al., 2001] or the home page athttp://sserver.sf.net .

2.2.1 Basic Operation

The Soccer Server System is a server-client system that simulates soccer between dis-
tributed agents. Clients communicate using a standard network protocol with well-defined
actions. The server keeps track of the current state of the objects in the world, executes

http://sserver.sf.net
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the actions requested by the clients, and periodically sends each agent noisy, incomplete
information about the world. Agents receive noisy information about the direction and
distance of objects on the field (the ball, players, goals, etc.); information is provided only
for objects in the field of vision of the agent. A screen shot is shown in Figure 2.2.

Figure 2.2: Screen shot of the Soccer Server System. The agents are represented as circles,
with the light colored portion indicating which direction they are facing. Agents on the
two teams are distinguished by the colors, with the light colored agents on one team and
the dark colored agents on the other. The ball is the white object above and to the left of
center. The coach agents are not depicted.

The agents must communicate with the server at the level of parameterized actions
like turn, dash, and kick. Higher level actions, such as passing and going to a position
on the field, must be implemented by combining the lower-level actions that the server
understands. For example, moving to a location requires a combination of turning and
dashing actions, and kicking the ball in a direction is usually a combination of a number
of small kicks and player movements to accelerate the ball in the correct direction. This
process, in combination with the perception and action noise of the environment, results in
noisy execution of the higher level actions. In particular, there is noise in the exact result
of the action and the time taken to execute it.
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There are eleven independent players on each side as well as a coach agent who has a
global view of the world, but whose only action is to send short messages to the players.
The coach does not get information about the percepts received by the players or the
actions that they have tried to execute.

Actions must be selected in real-time, with each of the agents having an opportunity
to act 10 times a second. Each of these action opportunities is known as a “cycle.” Visual
information is sent 6 or 7 times per second. Over a standard 10 minute game, this gives
6000 action opportunities and 4000 receipts of visual information.

The agents can communicate, but the communication is of limited bandwidth and un-
reliable. Further, only agents within 50m (approximately half the length of the field) of the
player who is talking will be able to hear the message. The coach is able to communicate
with all of the players on the field independent of their location. However, the coach is
allowed only occasional communication with the players, namely when the play is stopped
(due to an out of bounds call, kick-off, etc.) or every 30 seconds, whichever is sooner. The
coach’s utterances can not be heard by the opponent.

A few additional points should be noted:

• The world can change very quickly. Based on the maximum agent speeds and size
of the field, we can calculate that in about 15 seconds, the world could transition to
almost any state.1

• The score and global clock are the only shared state features. For all other informa-
tion, the agents must rely on their own local view and communication from team-
mates. Because of noise in sensations, the agents’ beliefs about the locations of
objects in the world are inconsistent.

• There is an active and intelligent opponent team.

We used a variety of server versions throughout the thesis, from 6.xx to 9.xx. The
changes between the server versions do not have a significant impact on the algorithms and
techniques used here except for the standard coaching language discussed in Section 2.2.2.

2.2.2 CLang

In the fall of 2000, the idea of having a competition among coach agents had been around
for some time in the community of RoboCup simulation league participants. While the

1Agents can move at about 10m/second and the field diagonal is about 123m, plus some time to manip-
ulate the ball if necessary.
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Soccer Server had support for coach agents, more was needed to create a coach compe-
tition. The chair for the simulation league for RoboCup 2001, Gal Kaminka, pushed to
make the competition happen.

In order to compare coaches, it is necessary for a coach to work with agents other than
those designed by the research group which created the coach. Otherwise, it would be im-
possible to determine what portion of the performance of a team should be credited to the
coach as opposed to the team itself. Therefore, a standard language for coaches to speak
to players was needed. In the fall of 2000, the interested parties from the RoboCup simu-
lation league community used the coach mailing list [Coach Mailing List] to collectively
design the language which became known as CLang.2 I was one of the main contributors
to the language.

CLang went through a sizable update in between RoboCup 2001 and RoboCup 2002,
corresponding to server versions 7.xx and 8.xx. CLang remained unchanged between 8.xx
and 9.xx. The version described here is the 8.xx version. With some minor syntactic
changes, almost everything in version 7.xx CLang can be written into version 8.xx CLang.

This section will cover the general structure and important aspects of CLang. This
text draws from the discussion on the coach mailing list [Coach Mailing List] as well as
the Soccer Server Manual [Chen et al., 2001]. The full details and grammar will not be
covered, but these are provided, along with extended examples, in Appendix A for the
interested reader.

The major features of CLang are:

• CLang is a rule based language. Conditions are based on various state variables,
such as the ball position, and the actions are abstract actions like passing or posi-
tioning. Rules can advise the agent to do ornot do an action.

• Regions of the field are used throughout the language. Regions can be defined by
flexible geometric shapes, possibly based on the locations of mobile objects on the
field (i.e. the ball and players). Regions can be additively combined. Conditions
and actions both use regions in their definitions.

• CLang has variables for player numbers. Variables can be instantiated in the condi-
tion part of the rule and then used in the action part. Unfortunately, because of the
difficulty of correctly implementing the variable matching, most coachable agents
support only the simple uses of variables (more details can be found in Appendix A).

2I believe that Timo Steffens gets credit for first using the name “CLang” (standing for Coach Language),
but it probably came from the fact that, when writing the code to implement the coach language in the server,
I used the abbreviation “clang” to mean coach language.
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• Expressions can be named. By assigning a name to an expression representing a
region, condition, or other CLang element, the element can be more easily reused
and changed. Names can also improve human legibility and conciseness.

• Rules can be nested. That is, the action part of a rule can refer to another rule.
Nesting allows concepts to be easily embodied in a set of rules and reused.

A coach gives a number of rules to the agents, at the beginning and/or throughout the
game. A rule consists of a condition (which is a logical combination of atoms about states
of the world) and a directive. A directive says that particular agents on the teamshould
or should notperform a set of actions. These actions are macro-actions like positioning
and passing. In order to specify both conditions and actions, regions on the field can be
defined in flexible ways.

To illustrate, here is an example of a CLang rule (note that line breaks are not signifi-
cant):

(definerule DEFMarkPlayer direc (
(and (not (playm bko)) (bpos "DEFRegLeft") )
(do our {2 3 4 5} (mark {0}))))

A rule named “DefMarkPlayer” is defined. Its condition is that the play mode isnot be-
fore kick off (not (playm bko)) and the ball is in a region named “DEFRegLeft”
(bpos "DEFRegLeft") . The definition of that region is not shown here. If the con-
dition is true, players 2, 3, 4, and 5 are advised to mark any player on the opponents team
(the set{0} indicates all players).

Further details can be found in Appendix A.

2.3 RCSSMaze

State and action spaces: continuous
Observability : partial
Multi-Agent/Adversarial : no
Level of advice actions : macro-actions
Optimal policy known : probably3

3We set up the mazes so that we think we know the optimal path. However, since we do not know all the
transition probabilities, we can’t be sure that we have the optimal path.
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Advice frequency : one time
Limited agent(s) : Yes, but can be modeled

The last environment is designed to be part way in between the complexity of the other
two. We created a maze environment we call RCSSMaze.4 An agent (which is being
coached) moves on a continuous plane. Also on the plane are agents acting as walls. Each
wall is much larger than the coached agent and if the agent runs into the wall, the agent
will get reset to a start state. The walls are mobile, responding to the current location of the
agent and/or timed waits. All movement of the walls follows fixed finite state machines.

We implemented RCSSMaze as a modification of the Soccer Server. We intentionally
left the partial, noisy observability to add noise to the maze that is not easily modeled. For
example, the walls will not always realize that the agent has run into them, especially if
the agent is on the edge of the wall. The agent is also not fully aware of the state of the
world. The actions maintain their noise, so the agent does not always accomplish what it
intends.

We require the agent to bring the ball with it as it moves through the maze. Running
into a wall is then moving into the kickable area for the wall, which then kicks the ball
back to the start state.

The basic interaction with the server and the simulated physics remain the same (except
for the much larger size of the wall agents). With this environment, we still need to use
abstract states and actions for reasoning, but it is easier to modify the functioning of the
environment (notably by changing the behavior of the walls) and the reward conditions for
the agent.

The agent still has limitations. We are using one particular implementation of the basic
skills such as moving and looking around. The performance of these skills is imperfect.
The coach can model the performance of the agent’s skills by observing the agent’s be-
havior.

One advantage of using a modification of the simulated soccer environment is that
we can still use the advice language CLang as described in Section 2.2.2. While some
components of the language make no sense (such as “opponents”), the remainder can still
be interpreted meaningfully by the agent.

By removing some of the variables from the soccer domain, RCSSMaze is a simpler
environment which allows more thorough experiments to be run. The behavior of the
walls can be more precisely controlled than particular opponent teams. Further, by design

4RCSS is the prefix for the files and project in the simulated robot soccer environment. RCSSMaze
stands for RoboCup Soccer Simulator Maze.
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of the environment, we believe that we (approximately) know the optimal policies for the
environment. Therefore, this is a good test bed for the learning and use of an environment
model.

We created two mazes for testing. A state of the first maze, which we call maze 0, is
shown in Figure 2.3, with some additional markings for explanation. The agent starts on
the left (where it is pictured) and is trying to get to the middle right hand side. While the
agent is not fully aware of the state of the maze, from our global perspective, there look to
be three possible routes to get there once going around the vertical line of walls. However,
if the agent moves into the upper pathway, walls A and B move to block the way. If the
agent moves into the lower pathway, wall C will move to block that pathway. However, if
the agent goes through the middle, the wall currently blocking the way (wall D) will move
and the agent can reach the reward.

Figure 2.3: A view of maze 0. The large white circles represent walls. The small dark
circle on the left with the white circle next to it is the agent to be coached.

The other maze, which we call maze 1, is a bit more complicated. The walls move
on time delays as well as in response to the agent’s position. A state of maze 1 is shown
in Figure 2.4. There are once again apparently three possible pathways to the goal in
the middle right. Walls A, B, and C in the upper pathway all move back and forth from
blocking the pathway to above it every 60 to 75 cycles. The agent could get through this
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pathway by waiting for each wall to move, then advancing. In the middle pathway, wall D
blocks and unblocks the path every 115 cycles. In addition, if the agent waits for 50 cycles
next to wall D while it is blocking the path, then walls E and F will move to the upper right
hand corner. This provides two ways for the agent to reach the goal through the middle
pathway: either wait for wall D to move or, if that takes a while, move around wall D once
walls E and F have moved away. Finally, if the agent takes the lower pathway, wall G
moves to block the way.

Figure 2.4: A view of maze 1. The large white circles represent walls. The small dark
circle in the middle with the white circle next to it is the agent.

As should be clear, the dynamics of maze 1 are more complicated than maze 0. In
addition, there are multiple possible paths to the goal and it is not clear which one is
optimal.

2.4 Summary

This chapter has covered the technical details of all environments used in this thesis. The
differences between them and the range of complexities was discussed. This chapter
should serve as a reference when the environments are used in later chapters.



28 CHAPTER 2. ENVIRONMENTS



Chapter 3

Advice Giving

One of the coaching sub-questions presented in Chapter 1 was “Once the coach has de-
sired actions for the team, how does the coach adapt advice to the agent abilities?” In this
chapter, we address this question. In particular, we assume that the coach already knows
how it wants the agents to act by knowing the optimal policies of the environment. How-
ever, the coach must deal with the agent’s physical or mental limitations. Throughout, the
agent is learning to perform in the environment at the same time that the coach is learning
how best to help.

We will be using the predator-prey environment as described in Section 2.1. The coach
has full knowledge of the dynamics of environment and all optimal policies. The “dynam-
ics” include the effects of all possible actions of the agents. In order for the experiments
to be as straightforward as possible, the coach’s advice will be in the form of a recom-
mended action for the predator to take. This direct form of advice allows us to focus on
the learning done by the coach and agent without having to be concerned with how advice
is interpreted by the agent.

All algorithms described in this chapter are fully implemented. Empirical validation is
done for all algorithms under various scenarios.

3.1 Continual Advice

We first consider an agent with no restrictions on the actions it can perform and commu-
nication from coach to agent every step. The algorithms for the coach to generate advice
and for the agent to incorporate advice into its behavior selection will now be explained.

29
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3.1.1 Learning Algorithms

We begin with basic Q-learning agents. Q-learning is a reinforcement learning algorithm
which does not make a model of the environment. A Q-table is maintained which, for every
state and every action, maintains an estimate (based on the past rewards and transitions) of
the value of taking a particular action in a particular state. The table is updated (with what
I call a Q-update) every time an action is taken, based on the previous state, the action, the
next state, and the reward received. At any point, a deterministic policy can be extracted
from a Q-table by picking, in each state, the action which has the highest Q-value.

Q-learning is a standard machine learning algorithm, and everything described here
until the addition of the coach agent is well known and well studied [e.g., Watkins and
Dayan, 1992]. The state space is assumed to be represented explicitly.

During learning, the agent has a fixed exploration probabilityε. With probabilityε the
agent takes a random action and with probability(1 − ε) it chooses uniformly randomly
between the actions with the highest Q-value. This action selection is commonly known
asε-greedy exploration.

For all Q-learning done here, the learning rate decays over time. For each Q-table
entry, we keep track of the number of times that entry has been updated (call itv), and
calculate the learning rate for each update as1

1+v
.

We modify the standard Q-learner by adding recommended actions. Every step, the
coach recommends a single action. We assume that the communication is free but limited.
Table 3.1 shows the algorithm used by the coached agent. The only difference with a
basic Q-learner is in choosing an action. The new parameterβ controls the probability
that the agent will follow the coach’s advice. Otherwise, the agent reverts to the normal
exploration mode. Except where noted, we useβ = 0.9. We use this parameter because
this is advice, not control as discussed in Section 1.1, where it is suggested that advice
receivers need to be able to interpret and refine advice for best effectiveness. In a real
system, the decision to ignore or interpret advice will naturally be more complex than a
simple random variable.

The coach is also a Q learner, but its actions are to adviseoptimal actions. The al-
gorithm for the coach is shown in Table 3.2. While this algorithm is overly complex for
this particular task, we will continue to use the same algorithm later in more complex
settings. The algorithm has two primary cases (which we will experimentally vary as an
independent variable): seeing the agent’s action and not seeing the agent’s action. If the
coach sees the agent’s action and the agent takes an optimal action, the coach performs a
Q-update with that action. This update is based on the assumption that if the coach had
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ContinualAdviceTaker(ε, β)
a := recommended action
with probabilityβ

doa
with probability1− β

Choose action (ε greedy)
Q-update for action performed

CoachContinualAdvice(ε)
g := last recommended action
if (see agent action (call ita))

if (a is optimal)
Q-update fora

else
no Q-update

else
Q-update forg

recommend action (ε greedy)

Table 3.1: ContinualAdviceTaker algo-
rithm for an agent Q-learning and receiv-
ing continual advice

Table 3.2: CoachContinualAdvice algo-
rithm for the coach Q-learning and provid-
ing advice

advised that action, the agent probably would have done it. Note that in general, there
may be multiple optimal actions in a particular state. However, if the action is not optimal,
the coach does nothing; the coach’s Q-table does not even include non-optimal actions. If
the coach does not see the agent’s actions, then the coach always performs the Q-update
for the recommended action. We assume that the coach does not know the algorithm (or
parameters such asβ) used by the advice receiver.

Note that this algorithm requires that the coach knows all optimal actions. For these
experiments, the coach precomputes the optimal actions beforehand.

What the coach is learning here (and will be learning throughout) is not what the
optimal actions are (the coach already knows this), but the value of the advice provided.
The coach restricts its Q-table to just the optimal actions and then pessimistically initializes
the table. The Q-table then provides an estimate of the value achieved by the agent when
the coachrecommendsan action (which is not the same as an agenttaking the action,
notably in the case where the coach can’t see the agent’s actions). This updating scheme
will have important consequences when the advisee agent has limitations in the following
sections.
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3.1.2 Experimental Results in Predator-Prey

In this section, we run experiments to establish two things. First, we need performance
baselines to which to compare results in later sections. The environment setup here is the
least restrictive of the ones we will consider. Second, we want to gain an understanding
of howβ, the amount that the agent listens to the coach, affects the speed of learning. We
expect that the performance will monotonically increase withβ, but we want to empirically
verify this.

We ran the learning algorithms above in the predator-prey environment (Section 2.1)
for 700,000 steps. We alternated periods of learning and evaluation. Every 5000 steps,
5000 steps of policy evaluation were done. The results throughout are the average values
per step obtained during the policy evaluation periods. We ran 10 separate trials of each
experimental condition and averaged the results together. In order to make the curves more
readable, the values of two periods of policy evaluation were averaged together before
plotting.

Throughout, we usedε = 0.1 as the exploration parameter. The Q table was initialized
to 0 everywhere, and the optimal Q values are positive everywhere. This initialization is
known as pessimistic and has the effect that as soon as an action is seen to have a positive
effect, it will be chosen more often.

Theβ = 0.0 line in Figure 3.1 shows the results for the predator agent learning without
the coach. The agent is learning, though over 700,000 steps (half of which are learning,
half are evaluation), the agent achieves only 36% of optimal.

The rest of Figure 3.1 presents the results of the coach advising (with the algorithm
CoachContinualAdvice from Table 3.2) and the predator taking advice (with the algo-
rithm ContinualAdviceTaker from Table 3.1), varying the value ofβ to the ContinualAd-
viceTaker algorithm. This valueβ controls how often the predator listens to the coach.
As expected, with the coach, the predator agent learns much more quickly and reaches
a nearly optimal policy. The coach is effectively guiding the agent to the right actions,
improving the speed at which the predator’s Q-table reflects an optimal policy. Also, the
more often the predator listens to the coach (i.e. asβ increases), the faster the learning
and the better the performance. However, there are obviously diminishing returns asβ
increases.

In short, as expected, increasing the probability that the agent listens to the coach
monotonically increases the performance of the agent, with diminishing returns.
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β = 0.3 74%
β = 0.1 54%
β = 0.0 36%

Figure 3.1: Data for a predator agent learning with a coach advising the agent every cycle.
The table on the right shows the performance level achieved at the last step of learning,
compared to optimal.

3.2 Limited Agent Actions

We now consider cases where the action space of the coached agent is limited. For our
purposes, this will mean that the agent is not able to perform some actions. In a complex
environment, differences in agent abilities can occur, and for these experiments, we will
model these differences as inability to perform some actions.

3.2.1 Learning Algorithms

A revised algorithm, LimitedContinualAdviceTaker, for the coached agent is shown in
Table 3.3. The only difference from ContinualAdviceTaker (Table 3.1) is that if the coach
recommends an action the agent can not perform, a random action is performed. This
choice is intended to simulate an agent which is not fully aware of its own limitations.
By trying to do something which it can’t do, some other action will result. However, we
assume that for a given state and recommended disabled action, thesameaction will result
every time.

The coach can follow the same CoachContinualAdvice algorithm as before (Table 3.2)
and should be able to learn which optimal policy the agent can follow. If the coach can see
the agent’s actions, then only those Q-values for actions which the agent can perform will
have their values increased. If the coach can not see the actions, then recommending an
action that the agent can perform will tend to lead to a higher value state than recommend-
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LimitedContinualAdviceTaker(ε, β)
a := recommended action
with probabilityβ

if (a is enabled)
doa

else
do random enabled action

with probability1− β
Choose action withε greedy exploration

Q-update based on action performed

Table 3.3: LimitedContinualAdviceTaker algorithm for an advice receiving agent with
limited actions. Note that for the random action done, the same action is chosen every
time that state is visited.

ing an action the agent can not perform (since the agent then takes some other possibly
non-optimal action). In this manner, the coach’s Q-table should reflect an optimal policy
that the agent can actually perform, and over time the coach should less often recommend
an action which the predator agent can not do. This algorithm implicitly assumes that the
agent can perform some optimal policy.

3.2.2 Experimental Results in Predator-Prey

These experiments will explore the effectiveness the algorithm CoachContinualAdvice
(Table 3.2) when the receiving agent has limitations. Our hypothesis is that a learning
coach will provide better advice than a non-learning coach, leading the agent to higher
performance. We once again use the predator-prey world as described in Section 2.1.

We constrain the limitations of the agent such that the agent can still perform some
optimal policy. In particular, in this environment, 9392 of the 46656 states have more
than one optimal action. Every choice of an optimal action for each of those states gives
an optimal policy. We impose a restriction on the action space of the predator such that
predator agent is able to perform exactly one of the optimal policies. We once again
average the results of 10 trials. Each trial has a separate set of limitations for the predator,
but the various experimental conditions use the same limitations.

Further, for a given state action pair, the same random action always results when the
agent is told to do an action it can not do. We also chose to useβ = 1.0 to emphasize the
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effects of the coach’s advice.

Results from this learning experiment are shown in Figure 3.2. In order to provide a
reasonable point of comparison, we ran an experiment with the coach providing intention-
ally bad advice. That is, for every state where the predator has an optimal action disabled,
the coach would always recommend that action, and the predator would always take the
same random action in a given state. This experimental setup is the data line “Coach Bad
Advice” in Figure 3.2. The data line for the predator learning without limitations and with
the coach (withβ = 1.0 from Section 3.1) is shown labeled “No Limitation.”
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Figure 3.2: The value of the policy learned by a limited predator agent under various
coach conditions. The table on the right shows the performance level achieved at the last
step of learning, compared to optimal.

An important issue to consider when analyzing the results is how much our limitation
algorithm actually limits the agent. Only 20% of the states have multiple optimal actions,
and of those, almost all have exactly 2 optimal actions. If an agent performs optimally on
the 80% of the state space with one optimal action and randomly anytime there is more
than one optimal action, the average reward per step of this policy is approximately 14.2
(optimal is 17.3).

Whether or not the coach sees the actions, the learning coach achieves better perfor-
mance than the baseline of bad advice and approaches the performance without limitations
at all. The coach also performs slightly better with learning, though as the “bad advice”
baseline shows, there is actually not too much room for improvement. Later experiments
will show where the coach’s learning can have a bigger impact.

A natural question to ask at this point is whether the coach is really learning anything



36 CHAPTER 3. ADVICE GIVING

about the agent’s abilities. One measure of what the coach has learned about the agent is
the percentage of the coach’s recommended actions that the agent can not do. Figure 3.3
shows this value as the simulation progresses. The three lines represent the cases where
the coach is not learning, learning and not seeing the agent’s actions, and learning and
seeing the agent’s actions. As one would expect, with learning, the percentage of bad
actions recommended goes down over time, and seeing the actions enables faster learning.
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Figure 3.3: As a function of time, the percentage of coach recommended actions which
the predator can not do. Each dot represents 10,000 steps.

In summary, the effect on the agent’s rewards of the coach’s learning while providing
advice was relatively small. While this was surprising, it was demonstrated that the coach
did learn about the abilities of the agent. The small magnitude of the effect on final reward
appears to come from the fact that the limitations imposed on the agent do not hurt the
performance a great deal. In other words, for an agent with few limitations, it is less useful
for a coach to learn about the agent.

3.3 Limited Bandwidth

Up to this point, the coach was giving advice to the agent every cycle. This set of exper-
iments deals with limiting the amount of advice provided. We still use an advisee agent
with a limited action space as described in Section 3.2.
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3.3.1 Learning Algorithms

To allow the coach to talk about states that are not the current state, a single piece of advice
is now a state-action pair. The coach is advising an agent to perform a particular action in
a particular state. We impose limitations on how much advice the coach can give. We use
two parameters:I is the interval for communication andK is the number of states that the
coach can advise about. EveryI cycles, the coach can sendK pieces of advice.

The agent stores all advice received from the coach and consults that table at each
time step. The new algorithm LimitedBWAdviceTaker is shown in Table 3.4. For this
experiment, the tableT simply stores all advice received and if multiple actions have been
advised for a given state, the table returns the first one received which the agent is capable
of doing.

LimitedBWAdviceTaker(ε, β, T )
if (advice received from coach)

add advice toT
if (current state is inT )

a := recommended action fromT
with probabilityβ

doa
with probability1− β

Choose action (ε greedy)
else

Choose action (ε greedy)
Q-update for action performed

Table 3.4: LimitedBWAdviceTaker algorithm for an advice receiving Q-learner with lim-
ited bandwidth with the coach.T is a table which stores past advice from the coach.

We propose two strategies for sending advice. The first strategy is mostly random; the
coach randomly choosesK states and sends advice for anoptimalaction for each of those
states (see Table 3.5). Note that while we call this a random strategy, it is still providing
optimal advice for the states it chooses. If the bandwidth between the coach and advice
receiver were large enough, CoachRandomState would send the entire optimal policy to
the agent.

The other strategy, CoachOptQ (see Table 3.6), is more knowledge intensive. It re-
quires the entire optimal Q table and always seeing the coached agent’s actions. Like
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CoachRandomState()
if (time to send advice)

doK times
s := random state
a := random optimal action fors
advise(s, a)

Table 3.5: CoachRandomState algorithm for coach giving advice with limited bandwidth

CoachRandomState, CoachOptQ always provides optimal advice for the states it chooses.
The difference is that CoachOptQ attempts to choose better states about which to advise.
The basic idea is to advise about the states observed for which the agent performed the
least valuable actions. Note that thesmallestvalues are chosen first since all of the values
in W are negative. If the algorithm runs out of states about which to advise, it simply
chooses random states rather than wasting the bandwidth.

CoachOptQ learns about agent limitations in the same way that the algorithm Coach-
ContinualAdvice (Table 3.2) does. Namely, through the Q-updates, the actions which the
agent can not do will end up with lower values as discussed in Section 3.2.1.

While neither CoachRandomState nor CoachOptQ may be good algorithms to imple-
ment in a real world setting, together they provide good bounds on the range of perfor-
mance that might be observed. CoachRandomState puts no intelligence into choosing
what states to advise about, and CoachOptQ uses more information than would likely
be available in any real world setting. The improvement that CoachOptQ achieves over
CoachRandomState indicates how much benefit could be achieved by doing smarter state
selection in an advice-giving framework like this one.

3.3.2 Experimental Results in Predator-Prey

In these experiments, we examine the difference in performance between the CoachRan-
domState (Table 3.5) and CoachOptQ (Table 3.6) algorithms. Since the CoachOptQ algo-
rithms uses more knowledge and learns during execution, we expect its performance to be
better, but we do not know to what extent or how it will vary with the bandwidth.

We once again use the predator-prey world as described in Section 3.1.2. The predator
has limited actions as described in Section 3.2.2. For the parameters limiting advice band-
width, we choseI to be 500 andK to vary between 1 and 50. Recall that everyI cycles,
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CoachOptQ(ε)
Q∗ := optimal Q-table
V ∗ := optimal value function (V ∗(s) = maxa Q∗(s, a))
W := (initially empty) history of agent actions
every cycle

s := current state
a := action the agent took
put 〈s, V ∗(s)−Q∗(s, a)〉 in W
if (a was an advised action fors)

perform Q-update
if (time to send advice)

W ′ = (smallestK values ofW )
for each(s′, x) in W ′

if (x ≈ 0)
s′ := random state

a′ := action fors′ (ε greedy)
advise(s′, a′)
remove(s′, x) from W

clearW

Table 3.6: CoachOptQ algorithm for coach giving advice with limited bandwidth.

the coach can sendK pieces of advice.

The results shown in Figure 3.4 are the average of 10 trials with different limitations
for each trial.1 Note first that as the amount of information the coach can send gets larger
(i.e. K gets larger), the agent learns more quickly. While the same performance as the
coach advising every cycle is not achieved, we do approach that performance.

Note that theK = 1 line is only slightly better than no coach at all. This result should
not be surprising given that throughout the entire run, the coach is only able to send 1400
pieces of advice throughout the entire run, which is only 3% of the state space.

For K = 25 andK = 50, we see that CoachOptQ performs better than CoachRan-
domState, which was expected, but the difference is not dramatic. We identify two factors
which contribute to the smaller than expected difference. First, by the end of the simula-

1In this case, different limitations were used for the different values ofK. Since we are averaging over
10 trials, any effect of a more or less difficult predator limitation should average out.
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Figure 3.4: Policy evaluation for the predator for various coach strategies and values of
K. Note that open symbols are always for the CoachOptQ strategy and the filled in symbol
of the same type is for CoachRandomState at the sameK level. Note that theK = 1 lines
overlap and are therefore not both visible. The table on the right shows the percent of
optimal for the policy reached at the final step.

tion, the CoachRandomState strategy achieves fairly large coverage of the state space. For
example, withK = 25, the random strategy is expected to provide advice for about 47%
of the states.2 Since the agent remembers all of the advice, near the end of the run it is
essentially getting optimal advice for half the states. Secondly, the CoachOptQ strategy
only considers states in which the agent has already been and taken an action before re-
verting to the same behavior as CoachRandomState. The chance of encountering one of
these states again is about the same as encountering any other given state.

In summary, while CoachOptQ always performed better than CoachRandomState, the
differences were surprisingly not dramatic. The next section continues to explore condi-
tions which affect the relative performance of CoachRandomState and CoachOptQ.

3.4 Limited Bandwidth and Memory

In Section 3.3, the coached agent had a limited action space and there was limited band-
width for communication between the agents. However, the coached agent remembered all

2With basic probability theory, one can calculate that ifT is the number of pieces of advice andS the
size of the state space, the expected number of distinct states about which the random strategy advises is
S(1 − (S−1

S )T ). At the end of 700,000 steps withK = 25, 35,000 pieces of advice have been given. With
S = 46, 656, the expected number is approximately 22,035 states.
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advice which the coach has sent. We next explore the additional limitation of varying the
amount of advice which can be remembered. The amount of advice may be an important
consideration for learners that suffer from the utility problem [Minton, 1988].

3.4.1 Learning Algorithms

We consider a straightforward FIFO (First-In, First-Out) model of memory. The coached
agent has a fixed memory size, and when it is full, the agent forgets the oldest advice.

The coach strategies are the same as before: CoachRandomState (Table 3.5) and Coa-
chOptQ (Table 3.6). The coached agent still uses LimitedBWAdviceTaker (Table 3.4), but
now the state advice tableT only stores the lastM pieces of advice heard, whereM is an
independent variable which we vary.

3.4.2 Experimental Results in Predator-Prey

These experiments explore how the addition of limited bandwidth affects the relative per-
formance of the CoachRandomState (Table 3.5) and CoachOptQ (Table 3.6) algorithms
for the coach. We hypothesize that in this more restricted environment, the difference in
performance will be greater.

We once again use the predator-prey world as described in Section 3.1.2. The predator
has limited actions as described in Section 3.2.2. Figure 3.5 and Table 3.7 show the results.
With the smallest memory ofM = 1000, the predator does not improve much over having
no coach at all. This result can be explained simply because the memory can only hold ap-
proximately 2% of the state space. For that memory level, note that the most improvement
(8%) is achieved by using CoachOptQ (for bothK = 25 andK = 50). As the amount of
memory is increased, the agent’s performance improves. ForK = 1, throughout the entire
simulation the coach only sends 1400 pieces of advice, just barely more than the smallest
memory. Therefore, we can not expect increasing the memory to improve performance for
K = 1 since memory is not the limiting resource for most of the simulation.

For the other cases, we see the same general effects of the differences between the
CoachRandomState and CoachOptQ strategies here as when there was no limited memory
(Section 3.3.2). The limited memory size effectively lowers the absolute performance of
all conditions. However, the difference between the two strategies shows that benefit can
be once again be obtained if the coach learns about the capabilities of the agent.

Overall, the CoachOptQ algorithm always performs better than CoachRandomState.
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% of Optimal
Condition M = 1000 M = 5000 M = 10000 M = 15000
K = 1, CoachOptQ 31% 30% 31% 32%
K = 1, CoachRandomState 31% 32% 31% 32%
K = 25, CoachOptQ 38% 49% 56% 59%
K = 25, CoachRandomState 33% 43% 50% 54%
K = 50, CoachOptQ 38% 54% 62% 66%
K = 50, CoachRandomState 33% 44% 54% 59%
No Coach 30%

Table 3.7: The percent of optimal for the policy reached at the final step of learning for
various experimental conditions.K is the number of pieces of state-action advice that can
be sent every 500 steps andM is the size of the memory of the agent. See Figure 3.5 for
the graphs of the policy learning over time.

Further, the difference in performance is greater in this more limited setting of limited
memory than in the previous set of experiments (see Section 3.3.2). These results suggest
that the more limitations faced by the coach/agent, the more useful it is for the coach to
learn about the abilities and current knowledge state of the coached agent.

3.5 Summary

This chapter has covered a number of algorithms for a learning coach to advise actions to a
learning agent. Variations in the abilities and memory of the advisee agent as well as varia-
tions in the bandwidth between coach and advisee were explored. Collectively, the results
in the predator-prey domain suggest that intelligent learning by the coach of the agent’s
limitations can lead to improvement, though dramatic improvement was not seen. Further,
higher bandwidth and memory give a greater opportunity for coach learning, though at the
extreme of constant advising interaction, the importance of the coach learning diminishes.
However, the more limited the setting (in bandwidth, memory, and agent abilities), the
greater (relative) effect the learning of the coach can have on the performance of the agent.
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Figure 3.5: Policy evaluation during learning with a limited predator, limited bandwidth,
and limited memory.M is the number of pieces of advice the predator can remember.K
is the number of pieces of advice the coach can say at each interval of 500 cycles. Note
that open symbols are always for the CoachOptQ strategy and the filled in symbol of the
same type is for CoachRandomState at the sameK level. See Table 3.7 for the percent of
optimal reached for each condition.



44 CHAPTER 3. ADVICE GIVING



Chapter 4

Learning Advice

Chapter 3 discussed the problems faced by a coach in giving good advice once the coach
knows the optimal policies for the agent(s) in the environment. In this chapter, we now
address the question of where this understanding of the environment can come from. The
coach passively observes the environment and then, based on those observations, con-
structs an abstract model of the environment. This model can then be used to generate
advice for the agents.

In this chapter we present:

• A set of algorithms to learn an abstract Markov Decision Process model of an envi-
ronment from observations (Section 4.2)

• The representations and details of our abstract state spaces (Section 4.3)

• Experimental results in RCSSMaze and several variations of simulated soccer (Sec-
tion 4.4)

4.1 Overview

Markov Decision Processes (MDPs) are a well-studied formalism for modeling an envi-
ronment and finding a good action policy. The use of both state and action abstraction has
received significant attention (see Section 7.5). In this research, we introduce algorithms to
construct an MDP from observed agent executions. The MDP uses both state abstraction
and temporally extended abstract actions.

45
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The route from observations or logs of games to a useful model for advice giving has
a number of steps. Figure 4.1 gives an overview of the entire process. The formalisms
mentioned will be explained throughout this section.
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Figure 4.1: The process of a coach learning a Markov Decision Process from observation.
The symbols are examples or types based on the formalisms presented. The boxes with
italics indicate information that must be provided to the system.

We now overview our algorithms for creating a Markov Decision Process from obser-
vations. Our goal is to learn anabstractMDP. The main steps of the process are:

• Transform observations into sequences of abstract states. Note that the observations
are series of states, without any information about actions performed.

• Create a Markov Chain based on the observed transition frequencies among the
abstract states.

• Transform the Markov Chain to a Markov Decision Process (MDP) by associating
transitions to actions based on abstract action templates. The action specifications
notably do not include any probability information; all probabilities are estimated
from the observed data.

• Add rewards to the MDP.

We then use this abstract MDP to provide advice to agent(s). However, while we
use the learned MDP for producing advice, an environment model can be useful in other
contexts and our learning algorithms are not limited to advice production uses.
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4.2 Model Learning Algorithms

This section describes in detail the algorithms to go from a set of observed executions in
the environment to an abstract Markov Decision Process and then to advice.

4.2.1 Observations to Markov Chain

There are two initial inputs to the process:

Observation dataconsisting of sequences of observed states. These sequences can come
from recordings of past performance or from online observation. LetS be the ob-
served state space. The observation data is then a list of sequences ofS, or in other
words, a list ofS∗. Note that we will be learning a fully observable MDP, so the
observational state space should capture enough of the underlying environment to
adequately capture the dynamics of the system.

State abstractionconsisting of an abstract state spaceS̄, and an abstraction function
B : S → S̄ ∪ ε. The symbolε represents a null value. IfB maps an element
of S to ε, this indicates there is no corresponding abstract state.

Observe and extractas shown in Figure 4.1 can then be implemented in terms of the
above. B is applied to every element of every sequence in the observation data. Any
elements that map toε are removed.Observe and extractoutputsabstract state tracesas
a list of S̄∗.

Given the state traces, thecombinealgorithm produces a Markov Chain, a tuple〈S̄,TMC〉
whereS̄ is the set of abstract states andTMC : S̄ × S̄ → R is the transition function.
TMC(s1, s2) gives the probability of transitioning froms1 to s2. Since the state spacēS
for the Markov Chain has already been given, all that is left is to calculate the transition
functionTMC .

The combinealgorithm estimates the transition probabilities based on the observed
transitions. The algorithm calculates, for every pair of statess1, s2 ∈ S̄, a valuecs1,s2

which is the number of times a transition froms1 to s2 was observed. The transition
function is then,∀s1, s2 ∈ S̄:

TMC(s1, s2) =
cs1,s2∑
s∈S̄ cs1,s

(4.1)



48 CHAPTER 4. LEARNING ADVICE

4.2.2 Markov Chain to MDP

The next step in the process is to convert the Markov Chain into a Markov Decision Pro-
cess. A Markov Decision Process (MDP) is a tuple〈S̄, Ā, TMDP , R〉. S̄ is the set of
abstract states,̄A is the set of (abstract) actions,TMDP : S̄ × Ā × S̄ → R is the transition
function, andR : S̄ → R is the reward function. Similar to a Markov Chain, the transi-
tion functionTMDP (s1, a, s2) gives the probability of transitioning froms1 to s2 given that
actiona was taken.

In our approach, a set of abstract action templates must be specified as two sets of
transitions between abstract states. A key feature of our representation is the division of
the transitions intoprimary andsecondarytransitions. Primary transitions are intended to
represent the normal or intended effects of actions. Whenever a primary transition of an
action is observed, it is assumed that it is possible to take that action. Secondary transitions
represent other possible effects of the actions. In many cases, these secondary transitions
will represent a failure of the intended action. Jensen et al. [2004] use this same sort of
definition to generate fault-tolerant plans.

We believe that specifying just the possible transitions associated with an action will
be much easier for a domain expert than trying to specify the full transition probabilities.
As will be discussed below, the separation of primary and secondary actions allows our
algorithms to better identify what actions are possible at a given state.

We initially assign a zero reward function. Describing the algorithms for associating
actions and transitions takes up the bulk of this section. We first illustrate the process using
the example shown in Figure 4.2, then provide the full details.

s2s3s0 .3.1.6 s1 a1a0a2s0s0
s0 s1s2s6s1s3s5s1s4 s0 .75.5a0a1

s1
s1s3
s2

.25.5
(a) Markov Chain State (b) Action Templates (c) MDP State

Figure 4.2: Associating actions with the transitions from one state in a Markov Chain to
create a Markov Decision Process state. In (b), the solid arrows are primary transitions
and the dotted arrows are secondary transitions.
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Our algorithm processes each abstract state in turn. Figure 4.2(a) shows the states0 in
the Markov Chain. The algorithm must determine which actions can be applied in each
state and how to assign the transitions and their probabilities to actions.

The transitions for the actionsa0, a1, anda2 are shown in Figure 4.2(b), with the
primary transitions in bold. An action is added for a state if any of the action’s primary
transitions exist for this state. In Figure 4.2(c), actionsa0 anda1 have been added, but
a2 has not since its primary transitions0 → s4 was not in the Markov Chain. Primary
transitions are intended to represent normal or intended effects of an action. Therefore,
this step of the algorithm only attaches an action to a state if such a normal or intended
transition is observed.

Once an action has been added, all transitions in the Markov Chain which are primary
or secondary transitions for the action are assigned to the action. Primary or secondary
transitions that are part of the action definition are notrequiredto be in the Markov Chain
(e.g. thes0 → s6 transition fora0 and thes0 → s5 for a1). Once all actions have been
processed, the probability mass for each transition is divided equally among all repetitions
of the transition and the resulting distributions are normalized. For example, in Figure 4.2,
the probability mass of 0.6 assigned to thes0 → s1 transition is divided by 2 for the 2
repetitions. The transitionss0 → s1 ands0 → s3 have, respectively, probabilities 0.3 and
0.1 before normalization and 0.75 and 0.25 after normalization.

Why is the original probability mass is divided equally among the repetitions? Some
set of actions were actually taken by agents in order to produce the observed transitions.
We donot have information about the distribution of actions that produced these transi-
tions. Therefore, for a given transition, we assume that the transition was caused equally
often by each of the actions. The effect of this assumption can be seen in the experiments
in Section 4.4.3. This is one area where future work could improve the algorithm.

Formally, an abstract action set̄A and functions giving the primary (Cp : Ā → P(S̄ ×
S̄)) and secondary (Cs : Ā → P(S̄ × S̄)) transitions must be given. We will calculate an
unnormalized transition functionT ′

MDP which will be normalized toTMDP . The complete
algorithm for adding actions to the Markov Chain is shown in Table 4.1.

As noted, a null action can be added. This occurs if a transition from the Markov chain
is not part of any of the actions created for this state (i.e. ifcsi

= 0 andTMC(s, si) 6= 0).
If everything about the model were perfect, this would not be needed. That is, if the
primary and secondary transitions were complete and correct for all actions and the state
abstraction maintained all relevant information about the dynamics of the world, then the
null action would not be created. However, it is difficult if not impossible to be perfect in
this respect. As long as not too many null actions are created, the learned MDP should
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For all s ∈ S̄
Let T ⊆ P(S̄ × S̄) be the transitions froms

T =
{
〈s, si〉 | si ∈ S̄, TMC(s, si) > 0

}
LetN ⊆ Ā be actions with primary transitions fors

N =
{
a ∈ Ā | Cp(a) ∩ T 6= ∅

}
For all si ∈ S̄

Let csi
be the number of actions fors → si

csi
= |{a ∈ N | 〈s, si〉 ∈ Cp(a) ∪ Cs(a)}|

For alla ∈ N
For all 〈s, si〉 ∈ Cp(a) ∪ Cs(a)

T ′
MDP (s, a, si) =

TMC(s, si)

csi

Add null action if needed (see text)
NormalizeT ′

MDP to TMDP

Table 4.1: Associating actions to convert a Markov Chain to an MDP.

still be useful. In order to catch errors in action definitions, the transitions which can be
assigned to the null action can be restricted, and if a disallowed one occurs, an error in the
action definition can be indicated.

The definition of primary and secondary transitions and the algorithm above support
situations in which the possible effects of an abstract action are known, but the probabili-
ties of occurrence of the various results are not.

One assumption about the process should be restated. For a given transition in the
Markov Chain, if several actions have that transition in their templates, then the probability
mass is divided equally among the actions. If the distribution of actions which generated
the observations is skewed or if the actual transition probabilities are greatly different, this
algorithm can misestimate the probabilities.

Also, note that this algorithm can not properly learn the transition probabilities for
two actions whose effects differ only in their probabilities. For example, consider a maze
environment with just left and right actions where the actual transition probabilities are
90% for the direction intended and 10% for the other way. However, for any set of ob-
servations, the algorithm here would equally divide the probability mass among the two
actions, making them appear identical.

Once we have a Markov Decision Process, any reward function can be applied. By
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changing the reward function, the learned Markov process can be used to produce different
behaviors. This is explored further in the empirical section below.

4.2.3 MDP to Advice

Finally, we go from a Markov Decision Process to advice. The first step is to solve
the MDP. Since we have all transition probabilities, we use a dynamic programming ap-
proach [Puterman, 1994]. This algorithm gives us a Q-table, where for alls ∈ S̄ and
a ∈ Ā, Q(s, a) gives the expected future discounted reward of taking actiona in states
and performing optimally afterwords. An optimal policy (a mapping fromS̄ to Ā) can be
extracted from theQ table by taking the action with the highestQ value for a given state.

States and actions for advice must then be chosen. Advising about all states can over-
load the communication between the coach and agents (which may be limited) and stress
the computational resources of the agent applying the advice [Minton, 1988]. Therefore,
the scope of advice is restricted as follows:

• Remove states which don’t have a minimum number of actions. For states with
many possible actions, the agents will in general be in more need of advice from
the coach. We experimented with different values, but for the experiments here, we
only removed states without any actions.

• Remove states whose optimal actions can’t be translated into the advice language.

• Only advise actions which are close to optimal. We only want to advise “good”
actions, but we must be specific about what good means. We only advise actions
whose values are within a given percentage of the optimal action for the given state
in the learned model.

Once the states and actions which to advise have been determined, they must be translated
into the advice language.

4.2.4 Advice in CLang

CLang (Section 2.2.2) is the advice language for both the simulated robot soccer environ-
ment (Section 2.2) and RCSSMaze (Section 2.3). In converting the solved MDP to CLang
advice, we pruned any action dealing with actions that the opponent takes. Clearly, we can
not advise the agents to perform these actions.
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The coach will be sending all the advice for all states at one time. That is, before the
agent has executed anything, the coach will send a set of rules providing advice for many
states which may be observed in the future..

After pruning, the coach is left with a set of pairs of abstract states and abstract actions.
The goal is to structure the advice such that it can be matched and applied quickly at
run time by the agents. We use the structured abstract state representation discussed in
Section 4.3.1 to construct a tree of CLang rules. At each internal node, one factor from
the state representation is matched. At each leaf, a set of actions (for the abstract state
matched along the path the the leaf) is advised. The example in Section A.2.3 is part of
such an advice tree.

4.3 Abstract State and Action Spaces

This section covers in more detail our representation for abstract states and actions. Sec-
tion 4.3.1 covers the tree-based representation we use for combining abstract state factors
into an abstract state space. Section 4.3.2 describes the abstract state factors used for the
soccer and RCSSMaze environments. The exact state space used differed for the various
experiments in Section 4.4, so we leave the explanation of the trees which combine the
factors until that section. Lastly, Section 4.3.3 discusses how the primary and secondary
transition functions were constructed, both the general principles and some of the details
for the soccer and RCSSMaze environments.

4.3.1 Tree Factored Representation

Factored state representations are a popular way to reason about state spaces for MDPs (see
Section 7.5). Typically, this means describing the state space as the conjunction of a
number of state factors rather than with a simple state index. For example, I could describe
the world by “It isnot raining,” “I do have an umbrella,” and “I am at school” rather than
“I am in state 17 of 32.” In addition to being more convenient for some purposes, use of a
factored representation can result in significant computational speedups.

We use factored abstract state spaces for all abstractions in this work. Because we
reason with explicitly represented Q-tables and MDPs, we want the size of the resulting
state space to be as small as possible. Therefore, we use a tree based representation that
combines factors with both the standard AND combination and an OR combination. This
section describes the representation and manipulation algorithms.
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Part of the purpose of the abstract state representation is to map the observation space
into the abstract state space. As discussed in Section 4.2.1, the abstraction functionB can
return the null valueε to indicate that no abstract state corresponds to this observed state.
We allow every factor to return this null value to indicate that the factor is not applicable
to the observed state.

The combination operations will map values of each factor into a natural number, with
a range of the size of the combined state space. First, we need a few notes on notation.
For an abstract state factorF , let BF be the abstraction function, mapping the observed
state space to an integer index. Note thatBF can return the null valueε. Let |F | represent
the size of the range of the output ofBF (not including the null value) i.e. the size of the
factor.

The standard combination of state factors is an AND combination. For state factorsF
andG and for an observed world statew:

BF AND G(w) =


ε BF (w) = ε
ε BG(w) = ε
BF (w)|G|+ BG(w) o.w.

(4.2)

With this definition,|F AND G| = |F ||G|. The multiplication of the state space size
can quickly lead to unmanageably large spaces. We therefore use an OR combination
as well. First, note that the OR is ordered (i.e. it is not commutative) though it is still
associative. Informally, the value ofF OR G comes from the first factor which does not
returnε. Formally, for an observed world statew:

BF OR G(w) =

{
BF (w) BF (w) 6= ε
BG(w) |F |+ BF (w) = ε

(4.3)

With this definition,|F OR G| = |F | + |G|. An OR can be used in cases where some
values of the first factor make the value of the second factor irrelevant.

Once we have the basic AND and OR combination operations, a tree can be used to
represent arbitrary combinations of factors. All the internal nodes must be an AND or OR
and every leaf must be a state factor.

The use of OR factor combination allows different factors to be easily used for de-
scribing different parts of the state space. For example, in the state spaces used in the
soccer environment, different factors are used when the ball is in play and when the ball is
out of bounds.

One other part of our state abstraction representation needs to be discussed. We also
allow “filters” to be attached to any AND or OR. A filter is just a predicate on the world,
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i.e. a function from world state to true/false. If the filter returns false, the the factor returns
ε no matter what the value of the children.

4.3.2 Soccer State Spaces

We use similar spaces for both the RCSSMaze and simulated soccer environments. In this
section we describe the abstract state factors and filters that we use. The exact combina-
tions (in the tree structure described in Section 4.3.1) will be given in the experimental
sections (see Section 4.4).

The abstract state factors are:

Goal


0 we scored
1 they scored
ε o.w.

Dead Ball


0 our free kick
1 their free kick
ε o.w.

Ball Grid Location of the ball on a discretized grid for the field (see Figure 4.3).

Figure 4.3: The regions for the Ball Grid state factor



4.3. ABSTRACT STATE AND ACTION SPACES 55

Figure 4.4: “Ball Arc” player occupancy regions. The picture on the left shows the regions
for the opponent players and the picture on the right shows the regions for our teammates.
As shown by the shading, the innermost circle on the right is not a region to be considered.
In both cases the ball is at the center of the regions and there are 5 regions.

Ball Owner


0 we own the ball
1 they own the ball
2 neither team owns the ball

The ball owner is defined as the last agent to touch the ball. If multiple agents
touched it last or the game is in a neutral restart, no one owns the ball.

Player Occupancy Presence of teammate and opponent players in defined regions. We
use several different region sets for the various experiments (note that in the figures
the regions are centered around the ball and oriented so that the right is always
towards the attacking goal):

Ball Arc The regions are shown in Figure 4.4. We use different regions for the
opponent agents and our agents. In each case, each region has two values,
whether there is or is not a player of the correct type in the region.

Ball Path The regions are shown in Figure 4.5. Only one set of regions is used
for both the teammates and the opponents. Each region still has two possible
values but now the value is 1 only if there aremoreteammates than opponents
in the region.

Ball Grid The regions are shown in Figure 4.6. These regions will be used for the
RCSSMaze environment, so there is no teammate/opponent distinction. The
regions measure whether any wall agent is in the region.

Note that there are varying number of regions; “Ball Arc” has 10, “Ball Path” has
5, and “Ball Grid” has 4. This means that the state space size resulting from using
these different region sets will vary.
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Figure 4.5: “Ball Path” player occupancy
regions.

Figure 4.6: Ball Grid player occupancy
region. There are four regions that over-
lap, as shown by the areas in darker gray.
The ball is in the middle of the regions.

Maze Ball Kickable


0 the agent can kick the ball
1 a wall can kick the ball
2 both the agent and a wall can kick the ball

This factor is specifically for the RCSSMaze environment.

In addition, we use a number of filters as described in Section 4.3.1. Filters are func-
tions from the observed state space to true or false. The filters we use are:

Play Mode True if the play mode equals a particular value. The play mode represents the
state of the game, such as kick off left, goal kick right, etc. “Play on” is the mode
for normal play time.

Ball Kickable True if the ball is kickable for some agent.

Ball at Right Center True if the ball is in a 5.5m x 18m region at the far right center of
the area. In the soccer environment, this corresponds to one of the goal boxes.

Ball at Left Center True if the ball is in a 5.5m x 18m region at the far left center of the
area. In the soccer environment, this corresponds to one of the goal boxes.
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4.3.3 Transition Classification for Actions

The crucial step in converting a Markov Chain to a Markov Decision Process involves the
use of action templates to identify the possible actions and assign the observed transition
probabilities to the correct actions.

For the soccer domain, the abstract action spaceĀ was constrained by the advice
actions in CLang. CLang supports abstract actions like passing, dribbling, and clearing
(kicking the ball away). All these actions can take a parameter of an arbitrary region of
the field. Actions should correspond to changes in the abstract state space. Since many
CLang actions involve ball movement, we chose to consider the ball movement actions
with regions from the discrete grid of ball locations (see Figure 4.3) as the parameters.

We use several hand-coded steps to construct theCp andCs functions describing the
primary and secondary transitions for the actions.

Transitions are pairs of abstract states. We first identify a set of useful features about
pairs of abstract states. For example, we have features such as “we had the ball,” “is their
free kick,” and “ball moved nearby.” All of these features are defined solely in terms of
the values of the abstract state factors making up each abstract state (see Section 4.3.2 for
details about the factors). Every feature is a boolean value and any number of features can
be true for a given abstract state pair.

Based on these features, we then create classes of transitions. These classes summarize
the difference between the pair of abstract states. For example we have classes for “our
kick out of bounds, “our long pass or clear,” and “our hold ball.” Several points to note
are:

• There can be ambiguity in what a transition means. For example, in addition to the
“our long pass or clear” class, we have one for “our dribble or short pass.” Since
the abstract state does not recordwhichagent controlled the ball, dribbling and short
passes can result in the same abstract state sequence. Therefore, classes do not
necessarily represent just one kind of action or event.

• The classes are closely associated with actions, but are not identical to them. Rather,
each class more closely represents a possible effect from an action.

• Each transition is assigned to exactly one class. In particular, our classes are ordered
and the first matching class is used.

Finally, theCp andCs functions describing the primary and secondary transitions are
defined by giving sets of classes for the primary and secondary transitions for each action.
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Appendix B describes the features, classes, and abstract actions used for MDP learning
for both the soccer and RCSSMaze environments.

4.4 Experimental Results

The MDP learning and advice generation is fully implemented in the simulated soccer
(Section 2.2) and RCSSMaze (Section 2.3) environments. A version of the system de-
scribed here made up the bulk of the Owl entry to the RoboCup 2003 and 2004 coach
competitions. This section describes our empirical validation in a number of scenarios.
We begin with the soccer environment, starting with a circle passing task that is simpler
than the whole game. We then move on to experiments on the entire soccer game with a
variety of opponents. Finally, we present results in the RCSSMaze environment, including
an additional exploration of the effect of varying the input data for learning.

Throughout this section, we will be using a variety of agents, some which are coach-
able (meaning that they understand the CLang advice language) and some which are not.
Table 4.2 lists the agents used. The nickname will be used for the remainder of the section.

Nickname Full Name Year Coachable? Institution
UTA UTAustinVilla 2003 Yes Univ. Texas at Austin
CM3 Wyverns 2003 Yes Carnegie Mellon
CM4 Wyverns 2004 Yes Carnegie Mellon
SM SIRIM FC 2003 No SIRIM Berhad, Malaysia
EKA EKA - PWR 2003 No Wroclaw Univ. of Technology, Poland
BH Bold Hearts 2003 No Univ. of Hertfordshire, UK
UVA UvA Trilearn 2003 No Univ. of Amsterdam, Netherlands

Table 4.2: List of agents used in the experiments. The year specifies which RoboCup the
team participated in (or which version for teams that competed for multiple years).

4.4.1 Soccer: Circle Passing

We constructed a sub-game of soccer in order to clearly evaluate the MDP learning from
observed execution and the effect of automatically generated advice. These experiments
will serve to verify that the model learned via the algorithms above is sufficient to provide
advice to the agents. Additionally, the application of several different reward functions is
demonstrated.
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Figure 4.7: Locations and directions of passing for circle passing (cf. Figure 4.3).

We set up agents in a circle around the middle of the field and wrote a set of advice
rules which cause the agents to pass in a circle, as shown in Figure 4.7.1 The goal was to
use this data to learn a model which could then be used to generate advice for a different
team. This team would not know of the performance of the original team or even what the
reward states in the model are. The goal wasnot to replicate this passing pattern, but to
achieve a specified reward.

We ran 90 games of the UTA players executing this passing pattern. Note that because
of noise in the environment, not every pass happens as intended. Agents sometimes fail to
receive a pass and have to chase it outside of their normal positions. Kicks can be missed
such that the ball goes in a direction other than intended or such that it looks like the agent
is dribbling before it passes. These “errors” are important for the coach; it allows the coach
observe other possible actions and results of the original advice.

We ran the MDP learning on the 90 games of data. Figure 4.8 shows the abstract state
space we used, for both these experiments and the full game experiments discussed in
Section 4.4.2. We used the Ball Arc player occupancy regions for this experiment. Here,
since there were no opponents on the field, the total possible size of the abstract state space
was 5882 states. The effective state space size (states actually observed) was 346 states.
Our algorithms produced a Markov Chain and a Markov Decision Process from this data.

We experimented with adding different reward functions. For each reward function,
reward was associated withall states in which the ball was in a particular grid cell (see
Figure 4.7), namely:

Cell 13 The cell where the upper left player usually stands.

1Several small modification of the standard soccer rules were needed, namely stamina and offsides were
turned off and dead balls were put back into play after 1 second.
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OR

Goal AND

Dead Ball Ball Grid

AND
Filter: Play mode = PlayOn

Filter: Ball Kickable

Player Occupancy Ball Grid Ball Owner

Figure 4.8: The abstract state space used in the simulated soccer environment environ-
ment. We used two different player occupancy factors for soccer. For the circle passing
and some of the full game experiments, we used the Ball Arc regions, and for other full
game experiments we used the Ball Path regions. Details of these regions are given in
Section 4.3.2.

Cell 3 The cell immediately above the previous one. No agent would normally be here,
but some passes and miskicks will result in agents being in this square.

Cell 34 Near the middle of the field. Agents tend to move towards the ball (especially to
try and receive a pass) so agents often end up in this cell during training.

Cell 14 To the right of the upper left player. Since this cell is in the normal path between
two players passing, the ball will frequently pass through this square. On a miskick,
either one of the two closest agents could end up in that square with the ball.

One important note for all the reward states is that since the Ball Kickable filter is used,
abstract states are only observed when an agent can kick the ball. This means that the ball
merely passing through a region is not enough; one of the agents must touch the ball while
it is in the region. Further, although the training data had the agents passing the ball in a
circle, solving the MDP will lead the agents to get to the reward states as fast as possible.
Therefore, the execution with advice will not replicate the circle passing, but achieve the
specified reward quickly.

There are other reasonable reward functions. We chose these rewards to vary the degree
to which the reward states were observed during training. Similar states around any one
of the players would likely give similar results.

We ran with the CM3 agents receiving advice in each of these scenarios. Actions
were sent if they were within 99.9% of optimal. We randomly chose 100 spots in the area
around the players and for each of the eight cases (4 different rewards and training/with
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MDP advice) put the ball in each of those spots. The agents then ran for 200 cycles (20
seconds). A trial was considered a success if the agents got to any reward state in that
time. The time bound is somewhat arbitrary, but varying the time bound somewhat does
not significantly affect the relative results. Further, the completion results at a particular
time are easier to present and discuss than the full series of rewards received. Table 4.3
shows the results for the agents executing the learned advice for the four different reward
functions. The “Training Success” line shows the percent of trials which completed with
the specified reward during the initial UTA training games as a basis for comparison.

Reward Grid Cell 13 3 34 14
# times reward states observed 5095 211 1912 2078
Training Success % 53% 4% 40% 44%
Advice Success % 77% 21% 88% 69%

Table 4.3: Performance for circle passing. The reward state counts are the numbers of
times reward was given during training.

In all scenarios, the success percentage is higher with the MDP based advice. The
success percentage observed correlates well with the number of times the reward was
observed in training for two reasons. First, the more paths to the reward state that are
seen in training, the more likely that the coach has useful advice for any state that actually
arises. Second, the more often the reward state was seen, the easier the reward was for the
agents to achieve even without advice.

Table 4.3 ignored how long it took to achieve the reward. Figure 4.9 shows the per-
centage of trials which achieved reward for a variety of times. The graphs do not reveal
any particular time bound which makes a large difference, justifying our use of percent
completion by a given time bound as a measure of the advice’s effectiveness.

In all cases we see that agent execution is not perfect. This occurs for several reasons.
Noise in the perception and execution can cause actions to fail and have undesired effects.
Execution of some abstract actions (such as passing) require more to be true about the
underlying states than what is expressed by the abstraction. In passing, another agent
needs to be in or near the target location in order to receive the pass. Therefore, it can
happen that the advised abstract action can not be done at this time.

The reward cell 3 scenario was the most difficult for the agents to achieve. It was
also the set of reward states which was least often seen in training. More examples of
transitions to reward states should allow a better model to be created.

These experiments demonstrate that the coach can learn a model from observation
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Figure 4.9: Time taken for circle pass trials in testing and training. Thex-axis is the time
since the beginning of a trial and they-axis is the percentage of the trials which received
reward by that time. The error bars are 95% confidence intervals.
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which can then be used to improve agent performance. Changing the reward function can
allow the same transition model to be used to generate different advice. However, the
advice produced may not be that effective if not enough instances (relative to the noise
levels in the world) were observed in the training data. Also, the training date came from
the execution of one set of agents (UTA) and was successfully used to provide advice to
a different set of agents (CM3). This fact demonstrates that the abstract action templates
can be useful across agents.

4.4.2 Soccer: Full Game

We now move on to MDP learning and advice in the full soccer environment. It should be
emphasized at this point how challenging the soccer environment is. The performance of
a team is the product of many tightly integrated and interacting factors, such as:

• Teams must perform correct time management with the server. Noise inevitably
arises here because the agents are subject to the whims of the scheduling algorithms
of the operating system. However, systematic changes can drastically affect a team.
For example, at RoboCup 2000, after setting up our team, I discovered that the
agents’ performance was much lower than expected (based on test games against
known opponents). After much further testing, it was discovered that agents were
(on average) sending actions to the server 40ms after the beginning of the simulation
cycle rather than 60ms (which was done in previous testing). This small change
greatly affected the effectiveness of the agents.

• While essentially all teams implement the same basic set of skills like passing, drib-
ble, and shooting, the performance characteristics can vary greatly. Some teams
dribble faster and some safer. Some teams shoot quicker and with less power and
some do the opposite. In addition, decisions about where to look in the world greatly
affect the responsiveness of the agents. None of these properties of the performance
of the skills can be directly affected by the coach.

• Abilities and configurations of the above skills affect greatly the effectiveness of
various strategies. For example, a team that dribbles well may not need to position
players forward of the ball to receive forward passes. Teams that intercept the ball
quickly may not need to stay as close to opponent players to defend against them.

• Optimal policies are completely unknown for the environment. While much re-
search has gone into creating effective action policies, no one can provide a good
estimate for how close to optimal any policy or team is.
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• The results of a game have a large amount of noise. In many cases we will be looking
at the mean score difference in sets of games. Across all of our experiments the
median of the mean score difference in a set of games is 6 goals. In other words, the
average experiment run of 30 games has a mean goal difference of 6. However, the
median of therangeof score differences in a set of games is 9 goals. In other words,
in the average experimental run of 30 games, the observed score difference will vary
by 9 goals, which is larger than the observed mean score difference. The distribution
of scores is very wide compared to the magnitude of the score difference statistic.2

In addition to making experimentation more difficult, this randomness complicates
the learning process of the coach since full game effects must be observed quite
often in order to be reliable.

Factors such as these make any improvements through advice in overall performance (as
measured by score) a noteworthy achievement.

Opponent with Flaw

One ability that we would like a coach to have is to exploit the flaws in an opponent
team. If the training data is from that flawed team playing, then our MDP learning system
should be able to model and then exploit some flaws of an opponent team. In this section
we discuss experiments playing against an opponent with a particular flaw we designed.

We took the CM4 agents and modified them such that they will avoid going into a
corridor down the middle of the field. We will call this team FLAW. The corridor is the
rectangle shown in the pictures in Figure 4.10.

The training data for the MDP learning was 100 games of 3 different teams:

• 30 games of SM vs. FLAW

• 30 games of EKA vs. FLAW

• 40 games of CM4 vs. FLAW

An MDP was learned using the state space from Figure 4.8 with the Ball Path player
occupancy regions (see Section 4.3.2).

2An alternative way to think about this is that the median standard deviation is 2.3, so 95% of the score
differences of the games should lie in±4.6 goals of the mean score difference.
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Table 4.4 shows some game statistics for the various teams in training and CM4 when
being coached with the learned MDP. Note that the CM4 team has a lower overall perfor-
mance (on all statistics) compared to both SM and EKA, suggesting that CM4 is a weaker
team overall. Since many factors that can not be changed by the coach’s advice go into
making a strong team, we can not expect CM4 to reach the same performance as SM and
EKA. On all statistics, CM4 is helped significantly by the advice from the learned MDP.3

The performance of SM and EKA are provided as a point of comparison.

Teams Score Difference Mean BallX % Time Attacking
SM vs. FLAW 12.2[11.3,13.2] 19.0[18.93,19.11] 43%
EKA vs. FLAW 7.3 [6.5,8.1] 14.6[14.47,14.65] 35%
CM4 (training) vs. FLAW 0.7[0.4,1.0] 1.1 [1.04,1.16] 24%
CM4 (w/ MDP) vs FLAW 3.1[2.5,3.7] 9.5 [9.46,9.64] 35%

Table 4.4: Statistics for training and testing against the flawed team. All intervals are 95%
confidence intervals (the confidence intervals on the percent time attacking are all less than
1%). For score difference, positive is winning. For mean ballX, largerX indicates that
the ball is closer to the opponent goal. Time attacking is the percentage of time that the
team controlled the ball on the opponents’ half of the field.

In addition to seeing a strong positive effect in the final score, we are interested in
whether the learned MDP is producing advice which matches our intuition that the team
should dribble and pass in that corridor more. Qualitatively, we can see this is true. Fig-
ure 4.10 shows four example games from testing and training. While there are instances
in the training games of dribbling and passing through the forbidden corridor, it is much
more common in the training games.

More quantitatively, Figure 4.11 shows a histogram of the differences of the ballX
location (in the corridor) during training and testing. Each bar represents the number of
cycles the ball was in the corridor for thatX bin in testing minus the number of cycles
during training. Therefore, a negative bar represents that the ball was in theX bin in
the corridor less in testing and a positive bar represents that the ball was in thatX bin in
the corridor more in testing. The group of positive bars on the right hand side show that
the coached agents are moving the ball to the right hand side of the corridor (towards the
opponent goal) and consequently, spending less time on the left side of the corridor. This
effect is what one would expect if the coach’s advice directs the agent to move to the right
hand side of the corridor when possible.

3Neither SM or EKA understand CLang, so we can not coach these teams.
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Training Testing

Figure 4.10: Locations of the ball throughout 4 sample games, two from training (CM4
vs. FLAW) and two from testing (CM4 coached with the learned MDP vs. FLAW). The
rectangle is the area on the field that the team on the right (FLAW) avoids going into.
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Figure 4.11: Histogram of the ball’sX location when in the corridor. The right hand side
is closer to the opponent’s goal. They-axis is the number of cycles per game (on average)
that the ball was in the givenX bin in testing minus the number of cycles per game (on
average) in training.
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Overall, this experiment demonstrates that the model learning is able to successfully
identify and exploit a pattern of behavior in opponents. Since we do not have ana priori
model of the soccer game, testing against a team with a known flaw allows use to verify
that the model learning can find appropriate patterns in the execution data. We therefore
conjecture that similar patterns can be extracted in other environments.

Various Opponents

Now that we have experimentally verified that the MDP learning can be used to create
advice which exploits an opponent with a known flaw, we move on to experiments in-
volving real teams in the full soccer game. We believe that the advice from the learned
MDPs should have a positive effect on the play of the team. Additionally, we will com-
pare MDPs learned from a variety of opponents to MDPs learned from playing against the
actual opponent being tested against.

We experimented with a number of different learned MDPs. Table 4.5 provides a list
of the MDPs with information about the parameters of the learning. One important point
that has not been mentioned in that in looking at a logfile, the coach can analyze the game
from both the left and right teams’ perspectives (which is what was done for BallArc023
and BallPath5) or from just one team’s perspective. The latter makes more sense for the
MDPs which are learned from data against a particular opponent in order to learn only the
transitions exhibited by that opponent.

Name Player
Occupancy

# games Input

BallArc023 BallArc 2482 all past
BallPath5 BallPath 2482 all past
UVAvBH BallArc 100 UVA playing BH, only using UVA perspective
UVAvEKA BallArc 100 UVA playing EKA, only using UVA perspective
BHvEKA BallArc 100 BH playing EKA, only using BH perspective

Table 4.5: Learned MDPs used in soccer game experiments. All MDPs use the abstract
state space tree shown in Figure 4.8, but with different player occupancy regions. The
“all past” inputs are all logfiles from RoboCup2001 and 2002, German Open 2002 and
2003, Japan Open 2002 and 2003, American Open 2003, and Australian Open 2003 (601
logfiles) and 1724 more logfiles from our previous experiments with a number of past
teams (see Chapter 5).

We ran test games of the CM3 team running with various MDPs as shown in Table 4.6.
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The baseline was the team running with a formation (as described in Section 5.2.1) and
setplays (as described in Chapter 6).

Description Baseline BallArc023 UVAvOpp BHvOpp
vs. BH -7.5

[-8.30,-6.64]
-7.0
[-7.94,-5.99]

-5.8
[-6.55,-5.12]

vs. EKA 5.1
[4.32,5.93]

8.2
[6.93,9.41]

6.2
[5.46,6.99]

6.1
[5.37,6.83]

Table 4.6: Soccer game results of CM3 against several opponents with a variety of learned
MDPs. Each entry is the score difference, where positive is the CM3 team winning the
game. The intervals shown are 95% confidence intervals. The entries in bold are statis-
tically significant differences compared to the baseline at the 5% level with a one-tailed
t-test. The vOpp MDPs refer to the vBH or vEKA MDP as appropriate for the opponent.

The most important note about the results is that in spite of the great difficulty of the
task, the learned MDPs are able to have positive effects on the overall score of the games.
While not all MDPs result in significant positive effects against all teams (though note that
no MDP results in a statistically significant negative effect), learning an MDP can help the
team perform the task better in this relatively uncontrolled environment.

As shown, we experimented with learning MDPs specific to a particular opponent. The
MDPs learned from data of the opponent playing (the UVAvOpp and BHvOpp columns
in Table 4.6) perform significantly better than the baseline, but the results are mixed com-
paring to the non-opponent specific data. For the RCSSMaze environment, Section 4.4.3
further explores the dependence of the learning on the input data.

Coach Only Team

This section continues experiments dealing with the entire soccer game. Throughout,
we will be using the BallPath5 MDP as described in Table 4.5. The team which will
be coached with the MDP has the restriction that the team will only perform passes and
dribbles that the coach recommends. This team is a modification of CM4 (see Table 4.2),
and we will call it COCM4 (for Coach-Only CM4). This restriction is to both emphasize
the coach’s advice and to model a team which has very little knowledge of what to do. All
experiments will be with the COCM4 team playing the CM4 team but using a variety of
formations for the two teams.

Restricting the team in this way allows us to focus our evaluation on the value of
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the policy of the learned MDP. The previous experiments could only evaluate the policy
in relation to the default actions/policy of the coached team. By removing some of the
coached teams policy, the effect of the MDP based policy can be more clearly observed.

We use three different formations for both the coached and opponent teams, and play
all possible combinations, with and without the learned MDP advice. Table 4.7 shows
the results. In every case, the team using the learned MDP advice outperforms the team
without such advice and goes from losing on average to winning or tied.

Coached COCM4
team formation

CM4 Team Formation
Defensive(532) Normal(334) Offensive(3232)

Defensive(532) -.27[-0.617,0.0841]
.27[0.0192,0.514]

-0.33[-0.57,-0.097]
0.2[-0.018,0.42]

-0.47[-0.71,-0.22]
0[-0.24,0.24]

Normal(334) -0.23[-0.57,0.10]
0.1[-0.096,0.30]

-0.1[-0.32,0.12]
0.2[-0.056,0.46]

-0.8[-1.14,-0.46]
0.26[0.0020,0.53]

Offensive(3232) -0.33[-0.59,-0.070]
0.37[0.13,0.61]

-0.3[-0.57,-0.032]
0.47[0.24,0.69]

-0.63[-0.95,-0.31]
0.1[-0.12,0.32]

Table 4.7: Soccer game results for a number of variations of COCM4 playing against
CM4. The rows represent different formations for the coached COCM4 team, and the
columns represent different formations for the opponent CM4 team. The numbers rep-
resent standard soccer names for the formations and can be ignored for the non-soccer
inclined. The top line in each cell is the baseline (no MDP based advice) and the bottom
line is with the MDP based advice. The MDP used in every case was the BallPath MDP.
All differences between the two entries in table cell are significant at the 5% level accord-
ing to a one-tailedt-test. In all cases, the coached COCM4 team was constrained to only
perform passes and dribbles recommended by the coach.

These experiments demonstrate again that the learned MDP is useful for providing
advice to a team of agents in the soccer environment. The advice allows the team to win
matches that they were previously losing. Further, these experiments provide evidence
that the value of the advice comes at least in part from a good policy being extracted from
the model and not just good selection/interpretation of advice by the agents.

4.4.3 RCSSMaze

We now move on from the soccer environment to the RCSSMaze environment (described
in Section 2.3). Here, we can get cleaner experimental results, vary the environment and
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rewards more easily, and experiment further with how the source of input data affects the
usefulness of the MDP.

All of these experiments will be verifying that the model learning algorithms are suffi-
cient to learn models which are adequate representations of the environment. The models
are shown to be adequate because an agent agent receiving advice from the model is able
to greatly improve its performance.

All of the experiments in this environment are run in a similar way. The training data
consists of 40 ten minute executions in the environment (what the agent is doing during the
training will vary). The coach analyzes the logfiles and learns an MDP with the abstract
state space shown in Figure 4.12. The state space is set up so that state 0 is the normal
goal state (the leftmost branch of the tree) and the last state is the initial state (the rightmost
branch of the tree). A reward of 100 is assigned to some (set of) states and a reward of -1
assigned to the initial state.

AND
Filter: Ball at Right Center

OR

AND
Filter: Ball at Left Center

MazeBallKickable0 BallGrid 0

AND
Filter: Ball Kickable

Player Occupancy
Ball Grid

Figure 4.12: The abstract state space used in the RCSSMaze environment. The “0” boxes
represent constant factors which are always 0.

In testing, in order to evaluate how well the agent is doing, we count the percentage of
trials which are successful. A trial begins when the agent transitions from the start state
and ends when either the agent achieves the positive reward or is reset to the start state
(which usually means that the agent ran into a wall).

First, we consider maze 0. An important question is what the training data for the MDP
should be. In order for the coach’s learned MDP to be useful, a transition to a goal state
must be observed at some point. Otherwise the goal state will be unconnected to the rest
of the MDP and the value function will be negative everywhere. We initially tried to have
the agent pick a spot 10m away and move until it got there (or until it got reset to the start
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state), but this did not result in the agent ever achieving the reward. We therefore chose
seven special spots on the field, as shown in Figure 4.13. 95% of the time the agent needed
to chose a new target to move to, it uniformly randomly choose one of those targets. The
other 5% of the time, it chose a random point 10m away.

Figure 4.13: The agent targets for RCSSMaze 0 training. The 7 targets are marked by
plus symbols. The agent is shown on the left middle.

Forty ten minute executions were run in this scenario. For the MDP learning, we
consider three different (sets of) reward states:

Reward 0 Reward of 100 for getting to the far right center

Reward 1 Reward of 100 for running into a wall in the upper space

Reward 2 Reward of 100 for running into a wall in the lower space

In all cases we set a reward of -1 for being in the far left center, which is the start state that
the agents gets reset to when it runs into a wall.

MDPs were learned for each of these rewards and then forty ten minute executions
were run with the MDP advice. Table 4.8 shows the results. As expected, some reward
scenarios are more difficult to achieve; the longer the path to the goal (as reflected in
a lower number of overall trials), the more possibility for a failure, leading to a lower
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Training Testing
Reward Total Trials % Successful Total Trials % Successful
0 1620 1% 1060 64%
1 1620 1% 879 60%
2 1623 7% 1137 93%

Table 4.8: For the RCSSMaze 0, in the three different reward scenarios, trial success
percentages for training and testing when running with an MDP learned for that reward.

success percentage. However, the models learned allow the coach to provide advice to the
agent to greatly improve its reward.

Next, we consider maze 1. This maze is much more challenging for the agent. The
correct action depends more strongly on the changing world state. For the upper route, the
agent has to notice and wait for various agents to move. For the middle route, the agent
has to do the same, but has the additional benefit of some wall moving as long as the agent
stays in the same place.

We once again do training with fixed target move points, as shown in Figure 4.14. In
addition, to capture the necessity of the agent waiting in place for the world to change, the
agent simply holds in place for 40 cycles out of every 200 cycles.

Figure 4.14: The agent targets for RCSSMaze 1 training. There are 8 targets marked by
plus symbols. The agent is shown in the middle of the figure and the larger circles are
walls.
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After running the forty ten minute executions for training, we assign a reward of 100
for getting the ball to the far right center and a reward of -1 for the initial state at the far left
center. Note that there are two possible ways for the agent to get to the positive reward.
The upper route requires the agent to possibly wait for three different agents to move while
the middle one requires waiting only once, but probably for a longer time.

Using the MDP, the agent successfully completes 69% of the 945 trials. There are
two interesting points about the executions. First, the advice sends the agent through the
middle channel. While frequency in training does not necessarily reflect what will be
optimal in the MDP, it should be noted that 39 of the 44 times that reward was received
in training were through this middle channel. Second, if the agent goes down the middle
channel and there is a wall blocking its way, the moves to the left and then to the right
again. This behavior deserves some further explanation.

With our global knowledge, what do we believe is the best behavior for the agent when
it proceeds down the middle corridor and discovers that its way is blocked? This situation
is depicted in Figure 4.15. It would seem that the agent should just wait until the wall
moves out of the way. Instead, the MDP advises the agent to back up to the grid cell one
to the left, then move forward again. While this is a little surprising, it turns out to work
well. This behavior reveals clearly two of the assumptions in the learning:

• The world is assumed to be Markovfrom the perspective of the abstract state space.
If the Markov assumption is broken, then the model can produce unusual or incorrect
advice.

In the maze environment, when the agent is in the left grid cell of Figure 4.15, the
abstract state space does not include the information about whether the way ahead
is blocked. When the agent moves into grid cell on the right, the way will be either
blocked or not. From the MDP perspective, this will occur randomly. Since the
wall spends equal time blocking and not blocking the corridor, the probabilities will
be approximately equal. At the MDP level, if the “blocked” transition occurs, it
makes sense to just back up and try the “move to the right grid cell” action again.
Because of the assumed Markov property, whether the wall is blocked the next time
is assumed to be unrelated to whether it was blocked this time.

• The MDP is not modeling the time taken by actions. If all actions take approximately
the same amount of time, this may not matter much. However, if some actions take
significantly longer than others, the learned model can produce unusual or incorrect
advice.

In the maze environment, staying in place leads to abstract states being observed
every cycle while moving leads to less frequent abstract states. Therefore, from the
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Figure 4.15: Detail of the decision faced by the agent when blocked by a wall in the
middle corridor of maze 1. The grid lines correspond to the coach’s grid as shown in
Figure 4.3. The agent is depicted in the middle of the figure and the walls are the large
circles.

MDP perspective, the holding action result in more observed state transitions while
in actuality taking the same amount of time. Other abstract action formalisms, such
as Options [Sutton et al., 1999], provide time estimation and combining the learning
algorithms here with these kinds of formalisms is an interesting direction for future
work.

In summary, despite the minor violations of assumptions, the MDP learning is able to
find an effective policy for this more challenging maze environment as well.

The last problem considered experimentally in this environment is using the execution
of one MDP as training data for another. One of the benefits of the model learning algo-
rithms is that various rewards can be applied to the same model. However, what effect
does changing the training data have on the ability to learn a useful model?

We return to considering maze 0. Originally, we used training data based on the agent
randomly going to fixed points as shown in Figure 4.13. Instead of using this training
data for an MDP, we now consider executions of advice from a previously learned MDP
as training data for a new MDP. We use exactly the same process as before, just with
different input observations.

We have three additional sets of training data, one from each of the executions of the
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MDP learned for rewards 0, 1, and 2. From each of these, we can theoretically learn an
MDP for rewards 0, 1, and 2.

Results can be seen in Table 4.9. First, note that several entries in the table are marked
“n/a.” A useful MDP can not be learned from training data if a reward state is never
encountered. In only one case (reward set 0 from reward set 1) was a reward from a
different reward set ever observed during execution using the previous MDP. In that one
case, a reward set 0 state was observed exactly once, and as can be seen, the resulting
MDP is not useful for getting the agents to achieve that reward again.

# Rew. Seen in Training % Success in Testing
Training Data # States Rew. 0 Rew. 1 Rew 2 Rew. 0 Rew. 1 Rew 2
Original 371 11 115 1055 64% 60% 93%
From Reward 0 257 676 0 0 82% n/a n/a
From Reward 1 243 1 2909 0 0% 67% n/a
From Reward 2 147 0 0 9088 n/a n/a 78%

Table 4.9: Results for learning a new MDP from a previous MDP execution in RCSS-
Maze 0. All differences in the percent success columns between entries in the same col-
umn are statistically significant at the 5% level.

Next, for the reward set 0 and reward set 1 cases, using the training data from a previous
MDP testing improves the effectiveness of the MDP. The agents have successful trials 18%
and 7% more often using the new MDP.

The reward set 2 case is quite different. The MDP learned from the original data
performs better than the MDP learned from the execution traces of the first MDP. By
comparing the MDPs, we find that the second MDP is a victim of the success of the first.
Of the 308 unsuccessful trials, 245 of them go through two particular states. Both of these
states are immediately to the right of the starting state (grid cell 21) with different wall
occupancies. In contrast, only 27 of the 1102 successful trials go through these states. In
the original MDP, the recommended action was to move down (to grid cell 31). In contrast,
in the second MDP, the null action has the highest value (with the move action second). In
this second MDP, the null action transitions to the start state with probability 1. The start
state has a high value despite its negative reward of -1 because, in the training data, the
many examples of successful trajectories to achieve the +100 reward make the probability
of those transitions very high. In other words, the distribution of actions that produced
the transitions was very skewed and therefore the probabilities estimated by the MDP do
not match what is actually observed. This skew of the distribution of observed actions
is occurring in the other recursively learned MDPs, but does not have the negative effect
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observed in reward set 2.

These experiments suggest that the source of the observations used for learning can
significantly affect the efficacy of the MDP. In particular, if states leading to the reward
states are not observed often enough (or at all), the model will not have sufficient fidelity to
produce a useful policy/advice. One of the many interesting avenues opened by this thesis
is a further exploration/formalization of this dependence. Further, the possible increase
or decrease in performance as a result of tailoring the input data specifically to the task
mirrors the effect seen in the soccer environment in Section 4.4.2.

4.5 Summary

This chapter has presented a set of algorithms for learning an environment model (a
Markov Decision Process) from a set of observed agent executions in the environment.
The observations notably do not include information about what actions the agents were
executing. Rather, action information is inferred from supplied templates and observed
frequencies. Use of learned MDPs to provide effective advice to agents is demonstrated in
several variations of the simulated soccer environment and the RCSSMaze environment.
The experiments also reveal that if the Markov assumption on the abstract state space is
violated, unusual behavior can result. Additionally, learning a new MDP from execution
of a previous MDP can produce advice which is either more or less effective than the
previous MDP.



Chapter 5

Coaching in the Presence of Adversaries

Chapter 4 presented algorithms for a coach to learn about an environment in order to
provide advice. In environments with adversarial agents, learning about and adapting to
adversary behavior has great potential for helping a team. Learning about adversary agents
is an alternative source of advice compared to learning about the environment, though the
approaches can be complementary. Together, these approaches provide the knowledge
sources for advice in the breakdown of the coaching problem discussed in Chapter 1.

This chapter discusses several opponent model representations and learning algorithms
for a coach agent to learn about an adversary and use this knowledge to give advice to
agents. Empirical validation is performed in the simulated robot soccer domain.

5.1 Probabilistic Movement Models

The team planning for distributed execution (Chapter 6) requires that the coach be able to
predict the movements of the opponent players in order to evaluate the safety of a plan.
This section describes the representation, use, and selection of opponent models for this
planning.

The opponent models we present will specifically model opponent movement and po-
sition in a two dimensional plane, though the representation and algorithms should easily
extend to higher-dimensional metric spaces. We use the models to evaluate the quality of
various possible planned actions, but the same models would be useful for any application
where prediction of opponent movement would be useful.

Our work on opponent modeling is driven by the goal of improving the performance

77
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of teams of agents through their adaptation and effective response to different adversarial
teams. In the past, work has been done on adapting the teammates’ behavior to their
opponents’ behavior, mainly at the individual low level of positioning and interactions
between a small number of agents [e.g., Veloso et al., 1999, Stone et al., 2000]. While
such schemes do behave differently when paired with different adversaries, there is no
long term adaptation. Every time the adversary takes the same series of actions, the team
responds in the same way.

We specifically focus on situations where the game is stopped. At these times, a team
can coordinate and come up with a plan of action to execute once the ball is back in play.
These plans are known as setplays. In the standard rules for the simulated robot soccer
environment, this is also one of the times that the coach is permitted to talk (see Sec-
tion 2.2.1). Therefore the coach can make a plan which is then executed by the distributed
agents. Several preset setplay plans have been introduced that provide opportunities to po-
sition the teammates strategically and have been shown to contribute to the performance
of a team [Veloso et al., 1998, Stone et al., 1999, 2000]. Here, we contributeadaptive
setplays that change and improve throughout a game in response to the opponent team’s
behavior. We address the challenging problem of capturing some essential information
about the opponent team’s behavior to provide this adaptation.

Throughout, we will not be reasoning about any modeling that the opponents do of
our team. This choice is primarily for computational tractability and simplicity; handling
recursive agent modeling can be quite challenging [Gmytrasiewicz and Durfee, 1995].
Also, the amount of data we have to work with about a particular opponent is quite small.
If we considered richer opponent models involving recursive modeling, we would need
more data to correctly recognize the models.

Because of the short time span in a simulated soccer game, we decided to begin a game
with a fixed set of models and choose between them during the game. Selecting a model
should require fewer observations than trying to create a model from scratch.

These models are not intended to capture the full strategy or movements of the oppo-
nents. Rather, the models only need to capture the way the opponents move in the two to
twenty seconds after the game has stopped, while the setplay is actually going on.

Two assumptions related to the opponents should be noted. First, for best effective-
ness, these models should have good predictive power with respect to the set of opponents
expected. We assume that the variation in opponents can be approximately expressed in a
reasonably sized set of models from which to choose.

Second, the output of an opponent model does notexplicitlydepend upon the positions
of our players. However, the output does depend on the anticipated path of the ball, which
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the position of our teammates also depends on. The choice is made for computational
simplicity, especially in the context of the plan generation discussed in Section 6.3. No
fundamental reason would prevent a model from taking our teammates’ positions into
account and this is a direction for future work.

We will present the model representation and selection algorithm in general form in
Sections 5.1.1 and 5.1.2 and then discuss their use in robot soccer in Section 5.1.3. Sec-
tion 5.1.4 then presents an experimental validation.

5.1.1 Model Representation

Opponent models often have the general form of a function from state to actions (perhaps
a probability distribution over actions), which are intended to predict the actions the op-
ponents will take [e.g., Carmel and Markovitch, 1998]. We will follow this same basic
strategy, but predict the resulting state of the opponents rather than the actions taken to get
there. We also consider predicting the behavior of a team of agents, rather than a single
agent.

Let p be the number of players on a team. For notational simplicity, we will assume
our team and the opponent team have the same number of players, but this is not essential
to our formulation. We assume that the state of the world can be decomposed into three
components:

Sp
T This sequence ofp elements represents the state of each of our team members. In

other words, each agent’s state can be represented as an element ofST .

Sp
O The states of thep members of the opponent team.

SW The state of the world not represented bySP
T or Sp

O.

This state decomposition into agents’ states is similar to that used by Xuan et al. [2001] to
model communication between agents.

LetRO represent the set of probability distributions overSO and letA represents the
set of sequences of possible actions (including durations, if applicable) our team can take.
Conditional plans, where the next action depends on the observed state, are not considered
here.

An opponent model is then a function which probabilistically predicts the opponents’
future states based on the world state, opponent states, and planned actions of our team.
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In other words, we define a modelM as a function:

M : SW × Sp
O ×A → Rp

O (5.1)

Note that our team’s stateSp
T is not part of the inputs to the model. However, the actions of

our teamA are constrained by the team’s states so some such information is available to
the model. The choice to remove the explicit dependence onSp

T is made for computational
simplicity. On the other hand, each opponent player’s final state distribution may depend
on the starting states ofall the opponent players.

An opponent model of this form can be used to calculate the probability of an opponent
ending in a particular state. In particular, given a world statew ∈ SW , opponent states
si ∈ SO (∀i ∈ [1, p]), and a planned team actiona ∈ A, an opponent modelM says that
the probability for playerj being in ending stateej ∈ SO is

Pj[ej|w, s1, . . . , sp, a,M ] := M(w, s1, . . . , sp, a)[j](ej) (5.2)

We usePj to represent the probability over ending opponent states for opponentj. Nota-
tionally, we also consider probability distributions to be functions from the input set to the
real numbers.

In contrast to opponent models for game tree search [e.g., Carmel and Markovitch,
1996], our opponent models are predicting not just one action response of an opponent,
but the result of a series of interleaved team and opponent actions. Our model is explicitly
operating on abstract temporal and action levels, making it more applicable to environ-
ments with continuous or many discrete action opportunities.

5.1.2 Model Selection

Given the description of the opponent models, we can now describe the algorithm for
selecting the best matching model. Given the assumption that the opponent has chosen
one of our models at the beginning of the game and is then independently generating
observations from that model, we can use a naive Bayes classifier.

We maintain a probability distribution over the models. The original distribution (the
prior) is set by hand. Then, whenever a planning stage is entered, the model with the
highest probability is used. Upon observing a plan execution, we use observations of that
execution to update our probability distribution over the models.

We start with a probability distribution over the set of models{M1, . . . ,Mm} and then
observe. An observation is a tuple of starting world statew ∈ SW , starting states for all
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the opponent playerss ∈ Sp
O, a planned team actiona ∈ A, and ending states for all

opponent playerse := 〈e1, . . . , ep〉 ∈ Sp
O. We want to use that observation to calculate

a new probability distribution, theposterior. That distribution then becomes the prior for
the next observation update.

Consider one updating cycle with an observationo = 〈w, s, a, e〉. We wantP [Mi|o]
for each modelMi. Using Bayes’ rule we get

P [Mi|o] =
P [o|Mi]P [Mi]

P [o]
(5.3)

We make the following assumptions in order to simplify equation (5.3).

1. The players movements are independent. That is, the model may generate a prob-
ability distribution for playerx’s ending state based on everyone’s starting states.
However, what the actual observation is for playerx (assumed to be sampled from
this probability distribution) is independent from the actual observations of the other
players.

2. The probabilities of a particular set of starting states and planned action are inde-
pendent of the opponent model. This assumption is questionable since the planned
agent actions may depend on the opponent model determined to be the most likely.
However, results in Section 5.1.4 demonstrate we still are able to recognize models
correctly.

P [Mi|o] = P [w,s,a,e|Mi]
P [o]

P [Mi] (from eq. (5.3))

= P [e|w,s,a,Mi]P [w,s,a|Mi]
P [o]

P [Mi]

= P [e|w, s, a, Mi]
P [w,s,a]

P [o]
P [Mi] (assump. 2)

= P [e1|w, s, a, Mi]P [e2|w, s, a, Mi] . . . P [ep|w, s, a, Mi]︸ ︷︷ ︸
what opponent model calculates (eq. (5.2))

P [w, s, a]

P [o]︸ ︷︷ ︸
norm. constant

P [Mi]︸ ︷︷ ︸
prior

(assump. 1) (5.4)

The term labeled “norm. constant” is a normalization constant. That is, it does not
depend on which model is being updated, so we don’t have to explicitly calculate those
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terms. We calculate the remaining terms and then normalize the result to a probability
distribution.

The preceding computation began with the assumption that the opponent has chosen
one of our models and was generating observations from it. Of course, this is only an
approximation. However, if one model generally makes better predictions than the others,
then that model will be the most likely. Assuming one of the given models is correct
is the same type of assumption that is made in a number of statistical machine learning
problems. The question we are trying to answer is “Which of the models from this set best
explains opponent behavior?” This parallels the question in most machine learning tasks
with generative models of “Which hypothesis from this set best predicts the data?”

In addition to the update above, we use weight sharing at the end of each update cycle.
A small probability mass (0.1) is added to the probability value for every model and then
the distribution is renormalized. This means that if there arem models, a probabilityp
becomes:

p + 0.1

1 + 0.1m
(5.5)

Weight sharing prevents any model’s probability from going arbitrarily close to 0, while
not changing which model is most likely on any one update. Weight sharing allows the
update process to more quickly capture changes in the opponents behavior (if their behav-
ior switches from one model to another). For example, if the prior and an observation tell
us that one model has probability of 1, we still put a probability mass of1

10+m
on every

other model, meaning that we still believe there is a chance that the opponent team will, in
the future, act as described by the model.

Weight sharing also means that more recent observations are weighted more heavily.
Each step of weight sharing smoothes out the probability distribution. The perturbation
caused by an observation (i.e. making one or more models more likely based on what was
observed) is smoothed out by the weight sharing steps of other observation updates. More
recent observations have gone through less smoothing operations and can therefore have
an effect of larger magnitude.

If the opponent is changing or adapting, the coach may be able to track the changes,
depending on the speed of adaptation. Of course, a team that knew exactly the algorithm
we were using could still conceivably adapt just faster than the coach could keep up with.
Applying regret-minimization techniques such as Auer et al. [2002] is an interesting future
direction, but as far as the author knows, the complexity of the environment prevents the
direct application of any known techniques.
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5.1.3 Models in Robot Soccer

Conceptually, we want an opponent model to represent how an opponent plays defense
during setplays. We conjecture that a wide range of decision making systems of the op-
ponent can be roughly captured by a small set of models, though we have not empirically
verified this conjecture.

Remember thatp is the number of players on a team. LetL be the set of positions
on the field, discretized to 1m. The player state setsST andSO are both equal toL,
representing to location of a player. The world stateSW will also be equalL, representing
the location of the ball.

The planned ball movement will be the planned actions of our agents. We represent the
ball movement as a sequence of locations on the field (an element ofL∗). The expected
time for each ball movement, with bounds for normal execution, can be calculated based
on the empirically determined environment and agent execution parameters, such as time
to kick the ball and speed of the ball when passed.

An opponent model is then trying to predict where each opponent will be given the
ball’s current location (w ∈ L), the opponents’ initial positionss ∈ Lp, and a future path
of the balla ∈ L∗. In other words, the model answers a question like “Given the positions
of the opponents and the ball, if the ball moves like this over the next 2 seconds, where
will the opponents be at the end of those 2 seconds?” Formally, we have:

M : L︸︷︷︸
ball

position

× Lp
O︸︷︷︸

opponent
starting

positions

× L∗︸︷︷︸
planned

ball
movement

→ (Probability Distributions overL)p︸ ︷︷ ︸
predicted
opponent
positions

(5.6)
This definition is an instantiation of Equation (5.1) for robot soccer. An example appli-
cation of an opponent model is shown in Figure 5.1. Here, the model predicts that both
opponents move towards the final location of the ball.

Thus far, we have described the format of the opponent model, i.e.what must be
computed, but nothow this computation is done. For the implemented system, all player
distributions are represented as Gaussians. The models are simply functions which manip-
ulate these distributions in the appropriate way. However, note that the selection algorithm
described in Section 5.1.2 does not depend on this representation.

As an example, one of the models we use has all opponent players moving towards the
ball. The function which represents the model adjusts the input distributions by moving
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Figure 5.1: An example application of an opponent model. The fuzzy areas represent
probability distributions for the two ending locations of the opponent players (shown as
dark circles) as the ball moves along a path indicated by the arrows.

the means towards the ball and increasing all the variances. Section 5.1.4 discusses the set
of models we use for the empirical validation in more detail.

In addition, a decision must be made about how to generate observations from the
stream of data being received about the opponent positions. Clearly, if an observation
tuple is generated every cycle we will be violating the independence assumption of the
naive Bayes update, as well as giving the models little information (in terms of the ball
movement) with which to work. On the other hand, the more observations the coach gets,
the easier it is to correctly identify the correct model. To balance these competing factors,
we decided to create an observation for processing every time the agent who is controlling
the ball changes. An agent is considered to be controlling the ball if (i) the agent is the
closest player to the ball and (ii) the agent can kick the ball. A given observation can cover
anywhere from approximately 5 to 50 cycles (one half to five seconds) of movement.

5.1.4 Empirical Validation

The algorithms described above are fully implemented in the simulated robot soccer envi-
ronment. This section describes experiments to validate their effectiveness.

A natural question to ask now is whether the opponent models described can be ac-
tually recognized by the algorithm we present. We use several assumptions during the
probability updates, and if those assumptions are extensively violated, the recognition al-
gorithm will fail to work as predicted.
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In order to test whether these assumptions are violated, we first need to create a set
of opponent models to use. In all of the models, the distribution of each player’s final
position is represented by a 2-dimensional Gaussian with equal variance in all directions.
The standard deviation is an affine function of time (since the beginning of the setplay).
The mean is computed as discussed below.

We created five models for the empirical evaluation. This set of models represent fairly
distinct styles of movements by the opponents. The mean of each player’s final distribution
is computed relative to the initial position as follows:

No Movement At the initial position of the player

All to Ball Moved towards the ball at a constant speed

All Defensive Moved towards the defensive side of the field at a constant speed

All Offensive Moved towards the offensive end of the field at a constant speed

One to Ball This model is slightly different from the others. The ball’s movement is
broken down into cycles. At each cycle, whichever player is closest to the ball is
moved 0.6m closer to the ball.1 Note that since the ball can move faster than the
players, which player is closest to the ball can change several times during the ball’s
movement. The final positions of the players are the means of the distributions.

It should be emphasized that these models are not for the opponent’s behavior through-
out an entire simulated soccer game. The models are only intended to capture the way the
opponents move for the 5–20 seconds in which our team executes a set play from a dead
ball situation. The models do not capture any actions that the opponents take with the ball,
or how they play defense more generally.

The models are abstractions over player movements and we would like to verify that
these models can be used to recognize the differences in teams. Further, we want to explore
how long it takes for the naive Bayes based recognition algorithm to identify the correct
model. The coach is the only agent doing the recognition since it has the global view of
the field.

Before looking at how well each model can be recognized out of this set of models,
we must first understand how well any recognition algorithm could expect to do. We
call this the “separability” of a set of models. If two models make similar predictions in
most cases, it will be difficult to recognize one model over the other and we should not

1The players max speed is 1m/cycle.
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expect any recognition algorithm to get near perfect accuracy. The concept of separability
will give us a standard to compare how well the models are being recognized in the real
system. While separability seems to be a basic statistical concept, the author is not aware
of standard definitions or calculations which fit this problem.

Separability will of course be a function of anentire setof models, not a property of
any one model. Also, separability must be a function of the number of observations; as we
get more information, we expect to be able to identify the correct model more often.

For illustration, consider a simple example where you have two sets of models of coins.
In the first set, one model says that heads comes up 99% of the time and the other says
heads comes up 1%. For the second set, the models say 51% and 49%. Separability asks
the question: if the world is exactly described by one of the models in our set (but we
don’t know which one), how does the number of observations affect the probability we
will identify the correct model? Clearly, we are much more likely to identify the correct
model for the first set than the second set because the predictions are so different.

We will develop the concept of separability in four stages. First we will consider
the separability of two distributions given one observation, then the separability of two
distributions given multiple observations, then the separability of sets of distributions, and
finally the separability of a set of models.

Start with two distributionsA andB over two dimensions. The question we are inter-
ested in is: if we are seeing an observation probabilistically generated fromA, what is the
probability that the naive Bayes update (starting with a uniform prior) will return withA
being the most likely distribution? Equivalently, what is the probability mass ofA in the
area where the probability distribution function (i.e. pdf) ofA is greater than the pdf of
B? Of course, we are also interested in the case whereB is the distribution generating
observations, and in general these probabilities can be different.

Note that the concept of separability we are interested in here is similar to relative
entropy or Kullback-Leibler distance [Cover and Thomas, 1991]. The relative entropy of
distributionA to distributionB is (wherefA(x) is the pdf ofA atx):

D(A||B) :=

∫
fA(x) log

fA(x)

fB(x)
dx (5.7)

The important difference is that Kullback-Leibler distance is considering the ratio offA to
fB. In our update, we only care whetherfA or fB is larger; that is, if the wrong distribution
comes out as more likely in our update, we don’t care how wrong it is. In other words,
our loss function is binary (correct or incorrect) and Kullback-Leibler is targeted for a loss
function which is not. More precisely, ifIA>B(x) is an indicator function for whether
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fA(x) > fB(X), then our separability ofA from B is∫
fA(x)IA>B(x)dx (5.8)

If one considers the models in the context of how they are used, then the appropriate
loss function may not be binary as indicated here. The loss function should represent how
bad it is to use one model when another one is the true model. As will be shown below,
computing the separability ofmodelsis not trivial, nor is computing the true loss function
given the complicated use of the models in Section 6.3.1. Therefore, we will simplify the
separability computation by assuming a binary loss function.

Now consider seeing multiple observations instead of a single one. Once again, we are
interested in the probability thatA will have the highest posterior after the naive Bayes
update on all of the observations. This probability is challenging to solve for analytically,
but Monte Carlo simulation can estimate it.

Our concept of separability extends naturally to a set of distributions rather than just
two distributions. We still want to measure the chance that the correct distribution has the
highest probability. We can again use Monte Carlo simulation to estimate the probability
that the correct distribution will be recognized for any given number of observations.

Finally, the opponent models are not simple distributions. The models are functions
from starting world states, starting states of the opponents, and a planned team action to
distributions of the opponents’ states. We use an empirical test to estimate separability
of models. For each observationo1, . . . ok from real game play, we repeatedly generate a
series of artificial observations

(w, s, a, e1) . . . (w, s, a, en) (5.9)

where

• w ∈ SW is the starting world state

• s ∈ Sp
O is the set of opponents’ starting states

• a ∈ A is the planned team action

• e ∈ Sp
O is the set of opponents’ ending states

• n is the number of observations for which we want to estimate the probability of
correctness
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w, s, anda are taken from the real observationoi. Each set of ending opponents’ states
e1 . . . en is sampled from the distributions output by the correct model (the model for
which we want to estimate the probability of the naive Bayes being correct). For each
sequence of artificial observations, the update is performed. Averaging over all series of
observations, we can estimate the probability of a model being correctly recognized, given
n observations.

Figure 5.2 shows, for each model, the probability of that model being correctly recog-
nized as a function of the number of observations. One can see that if the models perfectly
capture the opponents, after only a few updates, the recognition accuracy should be quite
high (more than 85%).
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Figure 5.2: Separability of the models for a standard deviation increase rate of 0.3. The
“No Movement” and “One to Ball” lines are the lower two lines. Error bars of one standard
deviation are shown on only those two lines because the error bars are too small to be
visible on the others.

Given the accuracy we would expect if our models were perfect, we can empirically
see how well our recognition algorithm actually does. For each model, we programmed
teams of agents to act as close as we could manage to the behavior predicted by the model.
Note that we can not make this behavior perfect because of the partial observability and
dynamics of the world. We then ran our team and coach against each of these programmed
teams and recorded all the observations obtained. For each number of observationsn, we
examine all contiguous sequences ofn observations. For each sequence of observations,
we perform the naive Bayes update (starting from a uniform prior). For each model, the
empirical recognition accuracy is the percentage of the time that the correct model came
up as most likely after that series of observations.

Figure 5.3 summarizes the recognition accuracy of the models. For most models we
achieve 90% recognition after just 4 observations. The accuracies track the separability
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from Figure 5.2 with some exceptions. First, there is more confusion among all models
for the lowest couple of observations. This suggests that the tails of the distributions
are heavier than what the Gaussian model suggests, or possibly that the distributions are
multi-modal. Second, the One to Ball model is confused with the other models less than
the separability indicates, which probably means that the actual variation for the team is
less than that suggested by the model. Finally, the All Offensive model never achieves
the near 100% performance suggested by the separability. This result reveals something
missing from the model. Namely, during the actual executions, the players on the team
will not position themselves offsides. The details of the offsides rule in soccer are not
important, but basically it prevents the players from moving too far to the offensive side.
The offsides rule, which is ignored by the model, prevents the model’s predictions from
being completely accurate. Overall, note that the recognition accuracy is quite high after
very few observations.
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Figure 5.3: Given a number of observations and a model that the opponent is approxi-
mately executing, this graph shows the percentage of time a contiguous sequence of real
observations results in the correct model being most likely after our naive Bayes update.
This graph can be compared to the separability from Figure 5.2, but it should be noted that
the axes have different scales.

The exact separability and rate that the accuracy increases will of course change given
the set of models that one chooses. However, the observed accuracies tracked the theo-
retical separability quite well, suggesting that the assumptions made in the model recog-
nition algorithm were good enough. Secondly, the recognition accuracies increased quite
quickly, which is at least suggestive that other model sets may have similarly quick recog-
nition.
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5.2 Team Models

This section discusses two models of simulated robot soccer teams which describe the
overall play of a team: the formation, or general positioning, of a team and the patterns
of passing on the field. The learning and use of the models is described, followed by an
experimental exploration of their use.

This section is phrased in soccer terminology in many places (such as “formation”
and “passing”). However, spatial formations have been important in other robotic behav-
iors [e.g., Balch and Arkin, 1998] and the formations described here are an instance of the
general concept. Similarly, the patterns of passing of a team are an instance of looking for
repeated patterns of behavior in the execution trace of an agent team.

5.2.1 Formations by Learning

One important concept in robotic soccer is that of the formation of the team [Stone and
Veloso, 1999]. Similarly, teams of robots also maintain particular spatial relationships [e.g.,
Balch and Arkin, 1998]. The concept of formation used by CLang is embodied in the
“home” action. The home areas specify a region of the field in which the agent should
generally be. It doesnot require that the agent never leave that area; it is just a general
directive.

Our coach represents a formation as an axis aligned rectangle for each player on the
team. Rectangles are already in use by many teams (such as CMUnited [Stone et al.,
2000]) to represent home areas so we choose this representation for compatibility. From
the home areas, agents can also a infer a role in the team, with the common soccer distinc-
tions of defenders, midfielders, and forwards.

Based on observations of a team, our coach learns the formation of that team. The
algorithm’s input is the set of locations for each player on a team over one or more games.
The learning then takes place in two phases.

Phase 1: The goal of the first phase is, for each agent, to find a rectangle which is
not too big, yet encompasses the majority of the points of where the agent was during
the observed games. The learning is done separately for each agent with no interaction
between the data for each agent. First the mean position of the agent(cx, cy) is calculated,
as well as the standard deviation(sx, sy). Second, a random search over possible rectangles
is done. The rectangles to evaluate are generated from the following distribution (for the
left, right, top, and bottom of the rectangles), whereN(m,σ) represents a Gaussian with
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meanm and standard deviationσ (which is a parameter for the search)2:

(N(cx − sx, σ), N(cx + sx, σ), N(cy − sy, σ), N(cy + sy, σ)) (5.10)

The evaluation functionE takes three parameters:γ, β, M . E of rectangleR is then
(whereA is the area ofR andf is the fraction of points insideR):

E(R) = γfβ + (1− γ)

(
1− A

M

)
(5.11)

All parameters were hand tuned and we used the following values:σ = 10, γ = 0.95,
β = 1/3, andM = 900.

Phase 2: The first phase of learning ignores correlation among the agents. In fact,
it quite common for all agents to shift one direction or another as the ball moves around
the field. These correlated movements tend to cause the average positions (and therefore
the rectangles from phase 1 of the learning) to converge towards the middle of the field,
as shown in Figure 5.4(a). The second phase is designed to capture pairwise correlations
among the agents. The rectangles will be moved, but their shape will not be changed.

(a) After Phase 1 (b) After Phase 2

Figure 5.4: The learning of the CMUnited99 formation from RoboCup2000 games. Each
individual rectangle represents a home region for an agent, with a dot in the middle of
each rectangle. By looking at the location of these center dots, one can see that the home
regions in (a) are more clustered in the middle of the field than the home regions in (b).

For this phase, conceptually think of a spring being attached between the centers of the
rectangles of every pair of agents. The resting length for that spring is the observed average

2We use a coordinate frame where (0,0) is in the upper left.



92 CHAPTER 5. COACHING IN THE PRESENCE OF ADVERSARIES

distance between the agents. Also, attach a spring with a resting length of 0 between the
center of a rectangle and its position at the end of phase 1. A hill-climbing search is then
done to find a stable position of the system. Figure 5.4(b) shows an example of the effect
of the second phase of learning.

Now we describe the details of phase 2. First, the observed average distancetij be-
tween every two agents is calculated. Next, for each pair of agents, a valueαij roughly
corresponding the the tension of the spring in the above description is calculated as follows
(w, b, andm are parameters):

αii = b ∗ w (5.12)

αij = b ∗ emtij (i 6= j) (5.13)

Hereb is they-intercept of theα function andm is a slope parameter. The idea is to make
the shorter springs more tense, and therefore have more impact on the final position of the
agent’s rectangle. We use this distance weighting because we believe that the correlation
of movements of nearby agents is more important than for far away agents. Sincetii = 0
for all i, Equation (5.12) (used instead of Equation (5.13)) reduces the impact of the con-
nection to the original position, withw being a parameter which controls that weighting.
We usedw = 0.5, b = 0.1 andm = −0.01 here.

At each step of the hill-climbing search, a particular agentp is chosen at random to
have its rectangle shifted. All other rectangles are held fixed. For alli, let oi be the
original position of rectanglei and letci be the vector of the center of current position of
rectanglei. The evaluation function is then:

αpp (dist(cp, op))
2 +

∑
j 6=p

αpj (dist(cp, cj)− tpj)
2 (5.14)

The gradient of the evaluation function with respect tocp is easily calculated and a small
step is taken in the direction of the gradient (with learning rate0.1).

A learned formation can be used in two ways.

Imitation We identify a team which performed well against this particular opponent and
imitate that winning team’s formation.

Formation Based Marking The coach observes the previous games of the opponent we
will play and learns their formation. Each of the defenders is then assigned (greedily,
by distance between the centers of the home area rectangles) one of the forwards of
the opponent to mark for the whole game. The mark command is a standard CLang
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action as described in Section A.1.3. This use of the formation assumes that the
opponent team will use the same formation in the next game as they used in the
observed games.

5.2.2 Rule Learning

The passing patterns of a team are an important component of how the team plays the
game. Our coach observes the passes of teams in previous games in order to learn rules
which capture some of these passing patterns. These rules can then be used either to
imitate a team or to predict the passes an opponent will perform.

The coach observes previous games and for every passing instance gathers the follow-
ing data:

Passer locationThe(x, y) location of the passer at the start of the pass

Player locations For all teammates (except for the goalie) and opponents, the distance
and angle (in global coordinates) from the passer at the start of the pass

Receiver location The(x, y) location of the receiver at the completion of the pass

In order to get more training instances from each game, we make one further assump-
tion about the behavior patterns of a team. Namely, we assume that if the agent kicking
the ball for the pass began at any point along the trajectory of the pass, it would still of
performed the same pass.

More generally, this assumption is that for a macro-action that proceeds through a
sequence of states, if an agent would have performed the macro action at the beginning of
the sequence, the agent would have performed the action at any intermediate state in the
sequence. This assumption is especially reasonable when the macro action will accomplish
the same goal state (in soccer, the receiving agent having the ball) when the action is
performed at any intermediate state.

For soccer, this means that for every real observed passing instance, several imaginary
passing instances are created. Every 5 cycles (half a second) along the path of the ball an
imaginary pass is created. The locations of all agents are stored as where they were at that
time except for the passer, which is moved to at the ball location at that time.

The next step is to cluster the passer and receiver locations. We use Autoclass C [Cheese-
man et al., 1988] to create two sets of clusters: one for all passer locations and one for all
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receiver locations.3 Some domain-specific tweaking had to be done in order to get use-
ful clusters from Autoclass. Rather than changing the clustering algorithm, we chose to
modify the input data. In particular, for every non-imaginary pass’s receiver location, we
produced multiple input points for Autoclass. There are two parametersm ands to this
point replication. Each point had between0 andm extra points created by a sampling a
Gaussian with mean at the original point and a standard deviation ofs. We typically used
m = 6 ands = 3. An example of the clusters produced is shown Figure 5.5.

Figure 5.5: Example clusters learned with Autoclass. Each shaded area represents a
learned cluster of passer or receiver locations for a pass.

One important caveat must be noted. The clusters returned by Autoclass are not fixed
areas of the field. Rather, each cluster is represented by a mean and standard deviation in
2 dimensions. Each data point has a probability of belonging to each cluster. However,
several adjustments must be made to allow the learned rules to be expressible in CLang
(see Section 2.2.2). First, we ignore the probabilistic membership and assume each data
point belongs only to the most likely cluster. Second, the clusters are converted to fixed
regions of the field with boundaries at one standard deviation. If CLang were extended
to represent Gaussian ellipses, these changes would not be needed and the learning could
proceed virtually unchanged.

Once the clustering has been done, our coach learns rules via C4.5 [Quinlan, 1993].
20% of the data is reserved for testing. The input variables are:

Passer locationA discrete value for the cluster (absolute coordinates)

Teammate and opponent locations2 continuous variables for distance and angle of each
agent from the passer (relative to passer coordinates). These donot use the learned
clusters.

Receiver location A discrete value for the cluster (absolute coordinates)

3In Autoclass terms, we used “real location” variables with an error of .0001, which is the observation
error for the coach.
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The rules from C4.5 are then transformed into rules in CLang, depending upon how
they are to be used. If the rules are to be used for imitating the passing of the observed
team, the action attached to the condition of the rule is to pass to the area of the field (i.e.
the cluster) which the rule predicts. If the rules are to be used to predict the pass of the
opponent, the action is to mark that region of the field. We call these rules offensive and
defensive, respectively.

In order to make the process more concrete, we now provide an example of an learned
offensive rule.4 A detailed explanation of the meaning of the rule follows in order to help
the reader decipher the CLang.

1 ((and (play_mode play_on)
2 (bowner our)
3 (bpos "PLINCL0")
4 (ppos our 1 1 {6} ((pt ball) 23 1000 -180 360))
5 (ppos opp 1 1 {10} ((pt ball) 0 1000 151 29)))
6 (do our {2 3 4 5 6 7 8 9 10 11} (bto "PLOUTCL1" {p}))
7 (do our {11} (pos "PLOUTCL1")))

Lines 1–5 are the conditions for the rule and lines 6–7 are the directives. Line 2 says
that some player on our team is controlling the ball. Line 3 says that that the ball in a
particular cluster (“PLINCL0” is the name of the cluster). Lines 4 and 5 are conditions
on the position of particular players. Line 4 says that teammate number 6 is at least 23m
away, while line 5 says that the angle of opponent number 10 is between 151 and 180
degrees. Line 6 instructs all players on our team (except the goalie who is number 1) to
pass the ball to a particular cluster. Line 7 instructs a teammate number 11 (whose home
formation position is closest to cluster “PLOUTCL1”) to position itself in that region.

The defensive rules operate similarly. The difference is in the action that the team is
advised to do. If the rule predicts that the opponent is about to pass to a particular area,
nearby agents are advised to mark the line to the target region (see Section A.1.3).

5.2.3 Experimental Setup and Results

The language CLang (see Section 2.2.2) was adopted as a standard language for a coach
competition at RoboCup2001. Four teams competed, providing a unique opportunity to
see the effects of a coach designed by one group on the team of another.

4The format here is the 7.xx version of CLang, which is slightly different from the 8.xx version described
in Section 2.2.2 and Appendix A. However, the differences are minor and the reader should have no trouble
making the translation.
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The models described above are part of a fully functioning coach agent for the simu-
lated robot soccer environment. We participated in the coach competition, which consisted
a single game in each test case. This section reports on our thorough empirical evaluation
of our coach and the techniques used, which we performed after the competition. These
experiments are intended to show that the models presented learn something about the
team modeled and that such models can be useful for giving advice to a team.

Each experimental condition was run for 30 games and the average score difference (as
our score minus their score) is reported. Therefore a negative score difference represents
losing the game and a positive score difference is winning. All significance values reported
are for a two tailedt-test.

We use nine teams for our evaluation as shown in Table 5.1.5 We will use the nick-
names indicated for the remainder of this section. We prepend “C-” to indicate the coach
from that team, so for example “C-WE” is the coach from the WrightEagle team. The four
teams that understand CLang are WE, HR, DD, and CM. Team descriptions for teams
from 2000 can be found in Balch et al. [2001], descriptions for teams from 2001 can be
found in Coradeschi and Tadokoro [2002], and CMU99 is described in Stone et al. [2000].

Nickname Full Name Year Institution
WE WrightEagle 2001 University of Science and Technology, China
HR HelliRespina 2001 Allameh Helli High, Tehran
DD DirtyDozen 2001 University of Osnabrück
CM ChaMeleons 2001 Carnegie Mellon University
GEM Gemini 2001 Tokyo Institute of Technology
B Brainstormers 2001 University of Karlsruhe
VW VirtualWerder 2000 University of Bremen
ATH ATHumboldt 2000 Humboldt University
FCP FCPortugal 2000 Universities of Aveiro/Porto
CMU99 CMUnited99 1999 Carnegie Mellon University

Table 5.1: Teams used in opponent modeling experiments. All teams were competitors at
the international RoboCup events. Several teams kept the same name over several years of
competition, so the year field indicates which public version we used.

In order to measure the performance of our coaching algorithms in this domain, we

5In all experiments, we slowed the server down to 3-6 times normal speed so that all agents could run
on one machine. This was done for convenience for running the experiments. We tried to verify that agents
were not missing cycles and while this setup shouldn’t affect outcomes compared to running on several
machines, the design of the server makes it impossible to say for sure.
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must have a baseline to compare ourselves to. One answer is to compare to the per-
formance of the team with no coach. However, one problem in coaching systems is to
understand what magnitude of effect the coach can have. Since the agents can ignore or
interpret some advice, it is important to judge to what extent the coach’s advice can affect
the performance of the team. Therefore, we also compare to a “random” coach. The ran-
dom coach is a mode of our coach C-CM and we use some components of other techniques
to help generate the random advice. The random coach advice is generated as follows:

• A number of conditionsc is chosen from a Geometric(0.4)6 distribution.
• c conditions are chosen at random from conditions actually used for rules in the rule

learning (Section 5.2.2) and combined with “and.”
• A number of directives is chosen from a Geometric(0.4) distribution (each directive

contains a list of agents, a positive/negative advisory mode, and an action)
• For each directive, each agent is included with probability 0.8 and the advisory mode

is positive with probability 0.8.
• For each directive, a random action is selected uniformly. If a region of the field

is needed as a parameter to that action (such as “pass to”), it is selected uniformly
from the clusters used in the rule learning (see Section 5.2.2).

The random coach generates 35 rules at the beginning of the game and is then silent for
the rest of the game.

Our first set of experiments replicated the coach competition at RoboCup 2001 with
a larger number to games so that we can better account for noise in the outcomes. For
the four competitors, each coach was paired with each team. 30 games of each condition
were run. For the formation coaching, our coach (C-CM) observed all of Brainstormer’s
and Gemini’s games for the first round of the regular RoboCup team competition. Advice
was sent to imitate the Brainstormers formation and formation based marking was used
against Gemini’s formation. For the rule learning, a single game of Brainstormers against
Gemini was observed. Information about the rule learning can be found in Table 5.2. The
decision to imitate Brainstormers was made because they performed the best of any of the
opponents that Gemini had played up until that point.

The results of this first set of experiments can be seen in Table 5.4. First, for the WE
row, none of the differences between the entries are significant (p > .17 for all pairs). We
hypothesize that WE is effectively ignoring what the coach says since even the random
coach has no significant effect on the players.

6A Geometric(p) distribution is a discrete distribution where the probability of an outcomex ∈ [1,∞) is
px.
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Autoclass C4.5
# Examples # Start

clusters
# End

clusters
# Rules Accuracy

on Test Set
B v GEM 417 11 5 17 75.3%
GEM v B 51 2 9 8 40%
CMU99 v VW 1261 17 9 22 35.1%
VW v CMU99 497 7 4 13 43%
FCP v ATH 1638 8 9 34 61%
ATH v FCP 114 4 5 9 73.9%

Table 5.2: Values for rule learning. The first team listed is the one whose passes are
learned. For example, the first row is about Brainstormer’s passes against Gemini. The
last column represent the accuracy of the learned C4.5 decision tree on the 20% of data
reserved for testing.

Team Score Difference
WE 9.1 [8.1,10.2]
HR 1.6 [1.1,2.1]
DD -17.2[-18.1,-16.3]
CM -6.5 [-7.2,-5.9]

Table 5.3: Score differences (positive is winning) against a fixed opponent (GEM) for
teams without a coach. The intervals shown are 95% confidence intervals

For the HR row, it is clear that the team is listening to the advice, because C-DD has
a highly significant (p < .000001) negative effect on the team. However, both the C-HR
(the coach designed for that team) and our coach C-CM have no significant effect on the
score (p > .44). Skipping down to the CM row, all the coaches have a significant positive
effect on the team CM (p < .005), with our coach C-CM (the coach designed with CM)
having the greatest effect.

For the DD row, the notable effect is the large goal change (+8.4) for the team DD
using our coach C-CM. Even though the team and the coach were not designed together,
our coach can help their team. A more detailed analysis of this effect can be found in
the second set of experiments below. For the rest of the C-CM column, our coach helps
CM(p < .000001), and causes no significant effect on the other two teams (p > .44).
C-CM never hurts a team’s performance.

In short, use of our coach can have a significant positive effect on the team coached.
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Coaches
Team Random C-HR C-DD C-CM
WE 1.0 [0.1,1.9] 0.2 [-1.0,1.4] 0.7 [-0.2,1.7] 0.0 [-1.0,1.1]
HR X 0.0 [-0.5,0.5] -3.2[-4.0,-2.4] 0.2 [-0.2,0.8]
DD X X -1.4 [-2,7,-0.1]7 8.4 [7.6,9.3]
CM -8.3 [-9.3,-7.3] 2.1 [1.4,2.8] 1.3 [0.7,1.9] 4.4 [4.0,4.9]

Table 5.4: Score differences (positive is winning) against a fixed opponent (GEM) for four
teams and coaches. The differences shown are the change relative to the score differences
with no coach shown in Table 5.3. The intervals are 95% confidence intervals. Note that
the WrightEagle (WE) coach is not shown because we were unable to run it. Also, an ’X’
in a location indicates that we were unable to run those experiments because the agents
consistently crashed.

Except for the WrightEagle coach that we were unable to run, our coach had the best
performance of the coaches at the coach competition in RoboCup 2001.

The experiments above for our coach C-CM represent the combination of several dif-
ferent techniques for producing advice. This next set of experiments will serve to identify
which techniques provide this positive effect. To do this, we ran a sequence of games with
different combinations of the four techniques: formation imitation (F) from Section 5.2.1,
set plays (S) from Chapter 6, offensive and defensive rules (R) from Section 5.2.2, and
formation based marking (M) from Section 5.2.1.

For playing against VW, our coach (C-CM) observed 5 games of CMU99 playing
against VW. Advice was sent to imitate the CMU99 formation and formation based mark-
ing was used against VW’s formation. Rule learning was also done for those games. Sim-
ilarly, our coach learned from 10 games of FCP playing against ATH. Information about
the rule learning can be found in Table 5.2.

The results from the second set of experiments are shown in Figure 5.6. The CMvATH
set is different from the others in several respects. No combination of the techniques
resulted in an improvement for CM, and several combinations (F, FSR, FSRM) resulted in
significantly worse performance (p < .05) compared to no coach.

For the other teams, the combination of all techniques (FSRM) is always significantly
better than no coach (p < .00001). Looking at the individual techniques is also illustrative.
Sending a formation sometimes helps the team (DD v GEM) and sometimes hurts the

7One agent on the DD team crashed each time this experiment was run, so it may not be meaningful to
compare these results to the others shown here
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Figure 5.6: The score difference of teams coached by a random coach and various tech-
niques of C-CM. The score differences have been additively normalized to the no coach
values shown in the lower table. All error bars are 95% confidence intervals. Note that we
do not have random coach results for all cases. “F” represents just sending a formation;
“FS” represents a formation and setplays (see Chapter 6), “FSR” also includes offensive
and defensive rules, and “FSRM” adds formation-based marking.

performance (CM v GEM), even though exactly the same formation is sent in each case.
Clearly, the coach needs to learn something about the team being coached.

Except for the CM v ATH line, neither the rules (FSR) nor the formation based marking
(FSRM) make a significant impact on the score difference of the games (compared to FS).
The formation based marking was a minor part of the coach and it is no great surprise that
its impact is small. The rule learning, however, was the most ambitious of the coaching
techniques used. The test set accuracies reported in Table 5.2 suggest that the learning is
able to capture patterns in the passing of the teams. However, the learning of these patterns
is not reflected in the final score of the teams, though it should be noted that the rules do not
have the large negative effect that the randomized rules do. It is likely that imitating just
the passing pattern reflected in the rules is not enough to help the team significantly. The
environment learning described in Chapter 4 covers much more of the environment and
has better performance. Using the passing patterns identified to produce more effective
advice for the team is an interesting direction of future work.

Overall, the results are mixed. The formation learning worked successfully to produce
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advice to imitate a good team. The formation based marking, which uses a learned for-
mation to predict opponent strategy, produced no significant effect on the performance of
the team. The passing rule learning, while apparently capturing some patterns of a team,
failed to produce a significant effect when advice was generated from it. These models
are a beginning and an existence proof for opponent models in this complex multi-agent
domain.

5.3 Summary

This chapter has covered three different opponent model representations. The first model is
a probabilistic prediction of opponent locations based on our team actions. These models
were written by hand, but based on online observations, the coach selects the best matching
model to use in determining future actions. The second model is a formation, the spatial
correlations and patterns of a team. The last model, a team passing model, is a set of
learned rules describing patterns of team actions. The formation and passing models are
learned from past observations and are used both to imitate successful teams and to predict
the actions of the current opponent. All models are empirically evaluated in the simulated
robot soccer domain. The experiments show mixed results when using the models in the
soccer domain, suggesting both that improvement can be achieved and that further work
needs to be done to determine how to best produce advice based on the predictions of the
models.
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Chapter 6

Coaching Distributed Team Agents

The previous three chapters have considered how a coach can generate and adapt advice.
This chapter considers the last of the sub-questions of coaching: “What format does advice
take?” In particular, in order for advice to be effective, it must be in a format that can be
operationalized by the agents. When a team, rather than a single agent, is using the advice,
the problem becomes even more difficult. While in previous chapters the coach was often
providing advice to whole teams of agents, the advice was not specifically tailored for the
needs of distributed agents. This chapter considers the need for synchronization among
agents with different and conflicting views of the world.

6.1 Introduction

A coach agent with periodic communication with the distributed team agents is in a good
position to create plans for the agents to execute. Planning is generally easier to do in a
centralized fashion. Since the plan must be executed by multiple agents, a natural question
to ask is how coordination information can be effectively coded into the plan. We present
Multi-Agent Simple Temporal Networks (MASTNs) and an associated distributed plan
execution algorithm in answer to this challenge.

We will be using the simulated robot soccer environment as described in Section 2.2.
We specifically focus on situations where the game is stopped. At these times, a team
can coordinate and generate a plan of action to execute once the ball is back in play.
These plans are known as setplays. In the standard rules for the simulated robot soccer
environment, this is also one of the times that the coach is permitted to talk. Therefore the
coach can make a plan which is then executed by the distributed agents. Several preset

103
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setplay plans have been introduced that provide opportunities to position the teammates
strategically and have been shown to contribute to the performance of a team [Stone et al.,
2000, 1999, Veloso et al., 1998]. We contribute adaptive setplays which are created online
by the coach agent. This planning process incorporates a model of the opponent players’
movements. These models are described fully in Section 5.1. This chapter describes the
plan representation, plan execution, and, in the context of simulated robot soccer, the plan
creation.

Our coach agent compiles an overall view of the game and teams in order to provide
centralized planning for the distributed agents. Here is a brief overview of our approach:

• The coach agent is equipped with a number of pre-defined opponent models. These
models are probabilistic representations of opponents’ predicted locations as de-
scribed in Section 5.1.

• When the game is stopped, the coach takes advantage of the available time to create a
team setplay plan that is a function of the modeled opponents’ behavior. The plan is
generated by a hill-climbing search in plan space. The evaluation function embeds
the predictions of the opponent model perceived to be the most likely during the
game. The plan generation notably uses the modelto predictthe opponent agents’
behaviors. Section 6.3.1 describes this process.

• The plan is encoded in a novel plan representation, a Multi-Agent Simple Temporal
Network (MASTN), which is a refinement of a Simple Temporal Network [Dechter
et al., 1991]. This representation effectively captures the temporal dependencies
between the plan steps, and explicitly records bounds on the expected execution
times of the actions. Section 6.2.1 covers the representation and Section 6.3.2 gives
information about encoding the plan into an MASTN.

• While the coach is a centralized planning agent, the agents must execute the plan
in a fully distributed manner with noisy, incomplete views of the world state. The
MASTN plan, as generated and delivered by the coach to the teammates, includes
the necessary information for the agents to execute and monitor the team plan in a
distributed manner. Section 6.2.3 describes the execution algorithm.

• The coach observes the execution of the plan in order to refine the selection of an
opponent model for future plans. Section 5.1 gives the details.

The MASTN representation and execution algorithm are explicitly put forth in non-
soccer specific terms. The plan generation algorithm uses an evaluation function based
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on specific soccer knowledge, but the general hill-climbing strategy should be applicable
elsewhere.

A coach using these techniques was part of a team that competed in the RoboCup
competitions in 2000, 2001, 2003, and 2004. The coach created a variety of setplay plans,
adaptively responding to completely unknown opponent teams. Unfortunately, the design
of the coach competition has prevented any meaningful scientific results being drawn from
competition results as the noise in the games has, in most cases, been significantly larger
than differences between the coaches.1 Instead, we present controlled empirical results
explaining and demonstrating the effectiveness of this approach.

6.2 Multi-Agent Plans

Our coach agent generates movement plans for its teammates and the ball. The coach
is a centralized planner, but the execution must be done in a fully distributed fashion.
Therefore, the coach must encode sufficient information into the plan to allow the agents
to coordinate and identify failures during execution.

The domain-independent portions of the plan representation and execution process are
described in this section, as well as their use in the simulated robot soccer environment.

In order to make the simulated robot soccer discussions more clear, we first illustrate
what an execution of a setplay plan looks like. Figure 6.1 shows the movements of the
ball and players over time. Teammate 1 starts with possession of the ball. The setplay
consists of teammate 1 passing to teammate 2, which moves to receive it. Simultaneously,
teammate 3 moves forward. Teammate 2 then passes to teammate 3. Note that there are
agent actions going on in parallel and that some actions (like the passes) require coordi-
nated efforts of more than one agent. The plan in Figure 6.1 will be used to illustrate the
representation and execution algorithm in the following sections.

6.2.1 Plan Representation: MASTN

We introduce Multi-Agent Simple Temporal Networks (MASTNs) as a plan representation
for distributed execution. MASTNs are a refinement of Simple Temporal Networks as
introduced by Dechter et al. [1991]. The refinements allow us to the define the execution

1Our coach placed first in 2001 and the experiments in Section 5.2.3 provide the demonstration that this
is meaningful. See Kuhlmann et al. [2004] for a similar set of experiments for 2003.
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Teammate OpponentBall

First Pass

Second Pass

2
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1

Figure 6.1: An example plan. The arrows indicate movement of the ball or a player.

algorithm discussed in Section 6.2.3. Taken together, the representation and execution
algorithm are a significant scientific contribution.

We will first present Simple Temporal Networks, then introduce our refinements to
make Multi-Agent Simple Temporal Networks. Our formal presentation is a combination
of the notations of Dechter et al. [1991] and Morris and Muscettola [2000].

A Simple Temporal Network is a tuple〈V, E , l〉 where

V is a set of nodes. Each node represents a event which occurs at a point in time. Activities
with duration must be broken up into two events, one representing the beginning and
one representing the end of the activity.

E ⊆ V × V is a set of directed edges between the nodes. Each edge represents a temporal
constraint between nodes.

l : E → (R ∪ −∞)× (R ∪∞) is the labeling function on the edges. The label represents
a temporal constraint between the events. For example, if〈a, b〉 ∈ E andl(a, b) =
〈x, y〉, then eventb is constrained to occur at leastx time units aftera, but no more
thany. Note thatx andy could be negative (indicating thatb should occur beforea)
or negative or positive infinity (respectively).

STNs are a representation of a subclass of temporal constraint satisfaction problems. A
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user of an STN often wants to answer questions like “Is there any set of times at which my
events can occur such that no constraints are violated?” or “What time should each event
be executed so that no constraint is violated?” Unlike more general temporal constraint
satisfaction problems, these questions can be answered in polynomial time for STNs.

We can now define Multi-Agent Simple Temporal Networks (MASTNs). We assume
we are given the following:

A A set of identifiers for the agents.

T A set of node types. Nodes represent events which are brought about by the agents,
so this set is similar to the set of actions available in traditional planning problems.
The nodes can be parameterized. For example, in the classic blocks world there
would be node types for “PickUp(RedBlock)”, “PickUp(GreenBlock)”, etc. Note
that which agent performs an event is explicitlynot part of a node type as that will
be represented elsewhere.

We then define the set of all possible nodes (i.e. events)N as2 T × P(A) × N∗.
TheP(A) represents the set of agents responsible for bringing about this event. TheN∗

element is used to provide “pointers” to other nodes (described below). The pointers allow
some information to be specified in only one plan node rather than being duplicated.

An MASTN plan is then a tuple〈V, E , l, O〉. These elements are:

V ⊆ N = T × P(A)× N∗ The set of nodes of the plan. Note that each node contains
more information than in a normal STN which considers each node a black box.

E ⊆ V × V The set of edges, just as in an STN.

l : E → (R ∪ −∞)× (R ∪∞) The labeling function on the edges, with the same mean-
ing as in an STN.

O : V → N An ordering function on the nodes. In other words, forv1, v2 ∈ V, o(v1) <
o(v2) means thatv1 comes beforev2. This ordering function is used as the address
space of the node pointers and to allow the agent to break ties when the temporal
constraints allow multiple events to be executed. The details of this tie-breaking are
discussed in Section 6.2.3.O is not a full temporal ordering of the nodes.

The authors are not aware of any other work where STNs are used as a basis for a
multi-agent plan representation for distributed execution. In particular, by “distributed

2Remember thatP is the power set operator andN is the natural numbers.
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execution” we mean that each agent maintains its own perception of the current state of
plan; there is no assumption of shared global sensations or plan state. Temporal networks
have several properties which are useful in a multi-agent context:

• The network represents the parallelism of agents’ actions. The temporal constraints
express some basic needed coordination between the agents.

• Temporal constraints can be used to help agents detect failures in the plan. Con-
straints can naturally catch limits on the extent of events or if an agent fails to take
appropriate action at the correct time.

• If an evente is not ready to execute because of temporal constraints, the network
represents which event(s) are preventinge from being ready. If an agent is respon-
sible for executing an event that is not ready, the agent can determine where in the
world to look to observe the future execution of the event which is preventinge from
being ready.

We introduce MASTNs as a way to take advantage of these properties for multi-agent plan
execution.

6.2.2 MASTNs in Robot Soccer

This section demonstrates how the MASTN representation is applied to simulated robot
soccer. We have to instantiate the domain specific valuesA andT . Let L be the set of
locations on the field.

• A is the set of numbers 1 through 11. Each agent is identified with a unique number.

• T is the set of node types, some of which have parameters. For example, if a node
typet has a parameter of typeL, then∀x ∈ L, 〈t, x〉 ∈ T . In particular, this means
that all parameters are bound and fixed for a plan; the values of parameters to nodes
do not change during plan execution.

Initial Position This node represents the event of all agents arriving at their initial
position for the player and the play starting. This node has a parameter which
is an element of the set of partial functions fromA → L, mapping agents to
their initial locations. This node is also the root node for execution, called “the
beginning of the world” by Dechter et al. [1991].
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Start Goto This node represents the beginning of the activity of a given agent going
to a location on the field. This node takes a parameter (which is an element of
L) indicating where to go.

End Goto This node represents the conclusion of the move begun by the “Start
Goto”. The node pointer element is used to specify the associated Start Goto
node.

Start Pass This node represents the beginning of a pass activity, where one agent
kicks the ball to a location on the field. This node takes a parameter which is
an element ofL indicating where to pass. While another agent should receive
the pass, that information is not explicitly represented in this node.

End Pass A pass is represented with three nodes: a Start Pass (for the kicker to start
the ball), a Start Goto (for an agent to start moving to receive the pass), and an
End Pass which represents the conclusion of both of those activities. The node
pointers are used to specify the related nodes.

Clear Ball This node represents an agent kicking the ball to a location. This node
takes a parameter which is an element ofL indicating where to kick the ball.
This differs from a “Start Pass” node because no particular agent is expected
to get the ball. There is no associated end node, because the plan is always
complete after a “Clear Ball” node executes.

An example plan is graphically shown in Figure 6.2. A successful execution of this
plan is depicted in Figure 6.1. The top three nodes represent the first pass from player 1
to player 2. The bottom two nodes represent the simultaneous movement of player 3.
The last three nodes (in the middle right of the figure) represent the pass from player 2 to
player 3.

6.2.3 Plan Execution

Plan execution is done in a fully distributed fashion. This means that each agent maintains
its own data structures describing the state of the plan and independently decides what
actions to take. However, it is assumed that every agent can get some knowledge of the
events in the plan being executed (either by communication or observation), though it isnot
required that agents agree exactly on the timing and sequencing of events. In domains with
limited observability or latency in the communication between agents, exact agreement is
difficult to obtain. Therefore, flexibility in agent agreement is important. In the simulated
soccer environment, the agents do have a shared global clock. In general, however, the
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Figure 6.2: An example MASTN. The nodes represent events and the edges represent
temporal constraints. The agent responsible for bringing about the occurrence of the event
is shown inside each node. The numbers in parentheses are vectors representing locations
on the field (elements ofL). These vectors are the parameters to the various node types.
The node pointers arenot explicitly represented in this picture. This plan corresponds to
the execution depicted in Figure 6.1.

agents do not have to agree on the exact time as long as each one can measure the progress
of time accurately. In other words, as long as each agent can measure how long a second
is accurately, it does not matter if all their watches agree.

Throughout, we will talk about “executing” a node. This means that the agent is taking
individual actions to accomplish the event represented by the node. As discussed in Sec-
tion 2.2, an agent is not able to precisely control when an event will occur, even when it is
the one executing the node. Further, we assume that each agent can only execute one node
at a time. That is, all the parallelism in the plan takes place by multiple agents performing
actions simultaneously.

In addition to executing various behaviors, the agents will be monitoring the execution
of actions that other agents are supposed to perform. If an agent is slow or failing to
execute its action, any agents which are temporally constrained by that undone action will
wait for it to be done. Note that currently the agents donot take over actions if the currently
assigned agent fails to execute it.

Muscettola et al. [1998] have described a “dispatching execution” algorithm for STN
execution. This method allows easy and efficient propagation of temporal constraints
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through the network at the cost of adding edges. The first step is to construct the all-
pairs closure of the STN (i.e. make an edge from every nodea to every other nodeb
whose length is the shortest path froma to b). Muscettola et al. describe a method to
then prune some of those edges to reduce the time requirements of plan execution, which
is important for STNs consisting of thousands of nodes. However, since we are working
with networks of tens of nodes instead of thousands, we do not prune any edges. We then
use the dispatching execution algorithms as subroutines to propagate temporal constraints
and identify violations.

Table 6.1 shows the full execution algorithm. The algorithm calls some domain specific
functions whose purpose will be discussed as the algorithm is covered in detail.

The “initialize” function initializes the data structures for the given plan. In particular,
the temporal constraints are set up for the dispatching execution algorithm. Then, at each
time step, each agent should run the “execute” function. The execution will result in some
action to take for this time step. At the next time step, the “execute” function is run again.
Over time, an agent will work to execute various nodes (by taking one of more actions to
accomplish each one) in the plan; it may take more than one action/time step to complete
execution of a given node. During a successful execution, nodes in the plan will be marked
as completed as the plan progresses.

First in the plan execution function is a call toglobal_monitor. This domain specific
function should implement monitoring conditions which apply to the whole plan. Return-
ing “fail” indicates that the plan should be aborted. In the soccer environment, we have
global monitoring conditions to catch situations like the ball going out of bounds or the
opponent intercepting the ball.

Next, in lines 9–11, the nodes in the plan which have not been marked as executed are
checked. The domain specific functionnode-completedmust be provided to identify when
a node has been executed. This decision can be based on perceptions or communication.
In general, this decision will depend on the type of nodeT and the agents tasked with
executing the node.

The functions propagate-constraints and constraints-violated are provided by the dis-
patching execution algorithm [Muscettola et al., 1998]. The function propagate-constraints
will update the “window” data structure with allowable times for the nodes to execute and
constraints-violated will indicate whether any temporal constraints have been violated.

The next section of the execute function (lines 16–21) identifies the next node for to
agent to execute. The ordering function is used to establish which of the nodes in the plan
this particular agent should be working on this time step.

Once the next node to execute is found, preconditions of that node can be checked (lines
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1 initialize(p: plan)
2 ∀n ∈ p.V
3 exectime(n) = ∅
4 window(n) = 〈−∞,∞〉
5 construct all-pairs network forp
6 execute(p: plan,t: time,a: agent)
7 if global-monitor() = fail
8 return abort
9 ∀n ∈ p.V
10 if (exectime(n) = ∅ andnode-completed(n))
11 exectime(n) = t
12 propagate-constraints()
13 ∀n ∈ p.V
14 if (constraints-violated)
15 return abort
16 //F is the set of nodes to still execute for this agent
17 F = {n ∈ p.V | exectime(n) = ∅ anda ∈ n.agents}
18 if (F = ∅)
19 return plan-completed
10 // mynode is the next node for this agent to execute
21 mynode =argminn∈F p.O(n)
22 if (notnode-precondition(mynode))
23 return abort
24 if (t < window(mynode)[1])
25 holdingnodes = {n ∈ V | (exectime(n)=∅ and〈n, mynode〉 ∈ p.E
26 and p.l(n, mynode)[1]≥ 0 }
27 if (holdingnodes =∅)
28 return in-progress // agent needs to wait for time to pass
29 else
30 look-at(holdingnodes)
31 return in-progress
32 execute-node(mynode)
33 return in-progress

Table 6.1: Plan execution algorithm for an individual agent. “exectime” and “window”
are data structures maintained during execution. Functionsin italics must be provided by
the user of this algorithm.
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22–23). For example, in the soccer environment, a Start Pass node requires that the agent
believes the teammate intended to receive the ball will be able to get it. This decision is
based on a learned decision tree [Stone, 2000] or other analytic methods [McAllester and
Stone, 2001].

If the temporal constraints do not allow the current node to execute (line 24), then
there are two cases. If there are no unexecuted nodes which must execute before this
one, then the agent just waits for time to pass (lines 27–28). If there is such a node, the
domain specificlook-at function is called to tell the agent to watch for the execution of
that node (lines 29–31). In the soccer environment, this is done by having the agent face
the point where the execution of that node should occur. In general, this could be done
with a communication request or any other observational means.

Otherwise, the agent works towards executing the next node (lines 32–33). Note that
the execution of a node may take more than one step and the agent is not required to
precisely control when the node executes. These criteria allow more freedom in how the
execution of nodes is carried out. For the soccer environment,execute-nodeis written
using the reactive CMUnited99 [Stone et al., 2000] layer to get robust performance of
such commands as “get the ball” or “kick the ball hard in directionx.”

That is the complete algorithm. This algorithm is being run by each agent in parallel
every step. Each agent maintains its own perception of the state of the plan; there is
no centralized control instructing agents when to perform actions. While STNs used in
scheduling tasks can provide coordination of agents, the agents usually have access to
shared global state or a shared controller, neither of which we have here. We allow the
agents’ perceptions of the execution state to differ as long as the difference does not cause
a violation of the temporal constraints.

For example, since the agents in the soccer domain use noisy, limited observations to
determine when a pass has started, the agents will in general not agree on the exact time
that the pass started. Noise can make the ball appear to move when it hasn’t or the agent
may not be looking at the ball when the pass starts. Even if none of the agents agree on the
exact time, the plan execution may still be successful as long as the temporal constraints
are not violated.

It is difficult to make precise statements about how much the agents’ perceptions of
the world are allowed to differ. The difference allowed will depend on the how much
flexibility there is in the plan. Plans could be constructed such that there is exactly one time
at which each event could execute, giving no flexibility in agents’ perceptions. The plans
generated here do allow for differences in agent perception and it is an open question how
much flexibility is allowed in “typical” plans for the soccer domain or for other interesting
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domains.

6.2.4 Plan Execution Example

We will now illustrate an execution of the plan shown in Figures 6.1 and 6.2. This section
will not attempt to cover all the steps of the algorithm described in Section 6.2.3. Rather,
some of the important points relating to distributed execution will be discussed.

Figure 6.3 shows each agent’s perceptions of when the events in the plan occur. The
shaded events are events for which that agent is responsible. Each agent is responsible for
its position in the Initial Position event. After that, agent 3 starts going to its next position.
Simultaneously, agent 1 starts the pass to agent 2 (SP1 → 2) and agent 1’s role in the plan
is complete. As shown by the shading, agent 1 no longer tracks the execution of the plan.
Some time later, agent 2 realizes that the pass has begun and starts to go to the reception
point for the pass (SG2). Meanwhile, agent 3 completes going to the intermediate point
(EG3). Once the first pass is complete (EP1 → 2), agent 2 passes to agent 3 (SP2 → 3).
Agent 2’s role is then complete. Agent 3 then proceeds to get the ball to complete the pass
(SG3 and EP2 → 3).
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Figure 6.3: Example execution of a plan. This is an execution of the plan in Figure 6.2
and illustrated in Figures 6.1. Each agent (shown on the rows) has its own perception of
when events occur; the time an agent perceives an event to occur is shown by the event’s
horizontal location. The shaded events in each row are the events which that agent is
responsible for bringing about. IP stands for Initial Position, SP for Start Pass, EP for End
Pass, SG for Start Goto, and EG for End Goto.

Note that the agents perceive events’ execution times to be different and that they do not
even always agree on the ordering (e.g. SG2 and EG3). However, each agent’s perception
of the order of events must obey the temporal constraints in the STN (Figure 6.2). Also,
at every point, each agent will verify global and local constraints and abort the plan if the
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verification fails. For example, if an opponent agent intercepts the first pass, the agents
will stop the plan, communicating their perception of the need for termination.

6.3 Plan Creation

Given the MASTN plan representation described in Section 6.2, it is still a significant
challenge to generate these plans, especially accounting for the predicted behavior of the
adversary. We divide the process of plan creation into four steps. The particular imple-
mentations of these steps rely on soccer specific knowledge, but this general breakdown
would likely be useful in other domains.

1. Waypoint Planning: This module plans the ball’s trajectory as a series of straight
line segments (which are passes or clears in robot soccer). Constraints are put on the
length of the segments based upon maximum agent and ball speeds, but agent move-
ments are not part of this step. A model that predicts the opponents’ movements is
used to help find a good plan.

2. Role Making: Given the planned trajectory for the ball, this step creates roles for
agents.

3. MASTN Compilation : This step takes the output from the role making step and
turns it into an MASTN.

4. Agent Instantiation: This step performs the role allocation of assigning particular
agents to roles in the plan.

Section 6.3.1 describes the waypoint planning and the other three steps are described in
Section 6.3.2.

6.3.1 Waypoint Planning

In order to plan the waypoints, we use models of opponent movement. Section 5.1 fully
describes these models, but for the purposes of this section, we can just that say that
waypoint planning is a path planning problem with straight-line segments and dynamic,
probabilistic obstacles (the obstacles are the opponents). Unlike many path planning prob-
lems, the obstacles are not fixed regions in known locations. Rather, we have a probability
distribution over each obstacle’s locations over time.
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The opponent models which describe the movement of the obstacles take into account
the current positions of the opponents and the predicted actions (i.e. the waypoints) to
produce the predicted movements of the opponents. The exact positions of our teammates
will be determined from the waypoints, but those positions are notexplicitly part of the
opponent model. Further, the waypoint planning ignores the current positions of the team-
mates since it is assumed that the team can move into the starting positions before the plan
begins.

The problem addressed here is significantly different from a traditional shortest-path
planning problem. Selecting a path in this environment inherently involves tradeoffs.
There may be one path that is extremely long and goes through an obstacle with very
low probability, and another path that is much shorter but has a higher probability of going
through an obstacle. To decide which path is better requires a tradeoff in the length and
safety of the path. Further, we do not have a single goal position, but rather a ranking of
the possible positions. That is, not every setplay will result in a goal being scored, but
some final positions from the setplay are better than others.

These constraints make it difficult to apply many of the traditional path planning meth-
ods, such as those described in Latombe [1991]. Planning methods that deal with uncer-
tainty do not usually handle obstacles whose location is only probabilistic. Rather, they
are more focused on dealing with noisy execution when following the path, or expect
replanning to be available. Approaches that deal with moving obstacles do not address
uncertainty in obstacle location.

TheD∗ algorithm, developed by Stentz [1994], was also considered. However,D∗ is
mostly useful for replanning when obstacles are observed to move, not handling the up-
front probabilistic movements we model here. We wanted our coach to come up with a
complete plan, not rely on the distributed, executing agents to replan. Replanning would
be difficult in this case both because of the partial observability of the executing agents
and the unreliable communication.

In order to plan in this challenging domain, we decided to directly specify an evaluation
function for paths and use hillclimbing on a set of paths to find a locally optimal path. The
evaluation function for the paths will include the processing of the probabilistic opponent
model.

Our evaluation function will meet the basic requirement of hillclimbing that nearby
paths have similar evaluations. Also, our plan space is about1018 so we can not cover
a large proportion of the space in the few seconds available for planning.3 Note that the

3The plan space size was estimated as follows. The field was discretized to 1m. Passes were considered
between 8m and 38m and sends between 38m and 55m. A plan could be up to four segments with the last



6.3. PLAN CREATION 117

coach can not plan until the ball actually goes out of bounds because the plan evaluation
depends on the current location of the ball and opponents.

We first describe the hillclimbing algorithm and then describe the evaluation function.
Our path planning algorithm is shown in Table 6.2. Note that sometimes (decided by the
variableA) we move only a single point in a hillclimbing step and sometimes we move
the entire tails of paths. By varying the neighborhood considered, the hillclimbing should
be able to escape more local minima.

S := Set of starting paths
while (there is time left)

Uniformly randomly remove a pathp from S
Uniformly randomly pick a pointx onp
Uniformly randomly setA to true or false
bestp = p
∀ small displacement vectorv

Make pathp′ by movingx by v
If (A)

In p′, move all points afterx by v
If eval(p′) > eval(bestp)

bestp = p′

Insertbestp into S
If (time left < half of original time)

Remove all but current best path fromS

Table 6.2: Hillclimbing algorithm for waypoint planning

Note that the hillclimbing runs for a fixed amount of time. Halfway through that time
the setS is reduced to just the path with the current best evaluation. This allows the second
half of the hillclimbing to focus on improving a single path as much as possible.

The set of starting paths are preset and depend on the location of the ball. This depen-
dence is necessary because different types of plans make sense for different situations such
as whether the ball is in the middle or side of the field, whether the ball is near our goal,
whether this is a corner kick, etc. Since only a small part of the plan space can be explored
by hillclimbing, setting good planning seeds can greatly help in finding a high-quality
plan. Figure 6.4 gives an example of the hillclimbing seeds for one setplay situation.

possibly being a clear.
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Figure 6.4: Examples hillclimbing seeds. These are the seeds for a goal kick from the
bottom side. The longer, darker arrows are clears and the shorter, lighter ones are passes.

The set of starting paths is an easy point for inserting domain knowledge into the
system. In particular, for the soccer environment we can give the basic shapes of paths,
such as passing to the outside then clearing from a free kick. If there is no domain expert to
provide this knowledge, random starting paths or paths taken from past executions could
be used.

The crucial part of hillclimbing is the evaluation function (eval in Table 6.2). While
the particular evaluation function chosen here is specific to the soccer domain, the general
idea of hillclimbing in plan space with a domain specific evaluation is applicable to other
domains. We use the following weighted factors:

• Player control at end

If the last segment of the path is a pass, we are in control of the ball at the end of the
play (this has value 1.0). If the last segment of the plan is a clear (kicking the ball
down field with no specific agent designated to get the ball), this has value 0.0. That
is, it is better that our team ends up with control of the ball rather than just kicking
it down the field.

• Ball’s end location

The value of the ball’s end location also depends on whether we are in control of
the ball at the end of the play. In other words, the value of a position of the ball
varies based on whether we have a teammate in control of it. Getting the ball near
the goal and the opponent’s baseline has high value, and just getting the ball further
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down field is also of high value. The functions are shown graphically in Figure 6.5.
The functions for a pass and a clear are almost identical except for two things. First,
the clear figure has less value inside the penalty box (if the ball is kicked into the
penalty box with no one nearby, the goalie will just grab it). Second, the clear has
additional value near the top of the penalty box because it may induce the goalie to
move out of the goal, giving a good shot if the ball can be retrieved and passed to an
agent on one of the sides. Readers interested in the exact definition of the evaluation
function should see the online thesis resources (see Appendix C for details).

Figure 6.5: Evaluation function for the final location of the ball. Darker is a higher eval-
uation. The left figure is for a pass (where we control the ball) and the right is for a clear
(where the ball is kicked to no particular agent at the end of the play).

• Length of plan

Since every action has some probability of failure, long plans have a lower chance
of succeeding then shorter ones. However, short plans add less to the team behavior
simply because they have less time to affect the behavior. This factor makes this
tradeoff explicit. Therefore, plans with length 3 (i.e. 3 passes or 2 passes and a
clear) have the highest value and the value degrades from there. The values here are
heuristic and chosen based on experience with this simulated robot soccer domain.
The exact values are shown in Table 6.3.

Length 1 2 3 4 5
Value 0.4 0.8 1.0 0.5 0.2

Table 6.3: Evaluation values for the "length of path" component
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• Average path safety and minimum path safety

These are two different measures of the safety of the path. The safety of each seg-
ment in the path is first evaluated and then the average and minimum of those values
is computed. A high value here represents greater safety.

We have two possible ways to compute the safety of a segment. The first method
samples the probability distributions of all the players in a triangle from the start of
the pass to the end of the pass (see Figure 6.6). Points are sampled at the rate of3

4

of a sample per 1 square meter. The width of the triangle at the end of the trajectory
is the same as the length of the trajectory. In order to deal with the problem that
all probabilities tend to decrease as the length of the pass increases, we multiply the
probability by a factor which grows as the time grows. We call this new quantity the
“occupancy” of the triangle. Ift is the time in cycles (each cycle is 100ms) andp is
the probability, we calculate occupancy by the empirically hand tuned equation:

1− (1− p)
t
6 (6.1)

The average and minimum values here are just 1.0 minus the average/maximum
occupancy of all the passes.

Pass

Start
Point

End
Point

Area in
which to sample

Figure 6.6: Sampling the probability distributions for pass safety

The second method uses just the means of the distributions of the opponents to esti-
mate the probability of a pass’s success. This method [McAllester and Stone, 2001]
is used during normal game play to evaluate many different passing options. It was
designed to be run extremely quickly, improving the speed of the hillclimbing steps.
However, distributional information (such as the variance) is ignored by looking
only at the mean of the distributions. The average safety is the average pass success
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probability while the minimum value is the minimum pass probability. The sec-
ond method is much faster and was therefore generally, though not always, used for
planning. We have not done a thorough empirical comparison of the two methods.

The factors are then added together with the weights shown in Table 6.4. The weight
were obtained through hand tuning after the system was implemented.

Factor Weight
Player control at end 0.22
Ball’s end location 0.2
Length of path 0.1
Average path safety 0.33
Minimum path safety 0.33

Table 6.4: Weights for combining the factors for the hillclimbing evaluation function

Hillclimbing has a good anytime characteristic in that as soon as our time for planning
is up, we have a plan ready to return (namely the best one so far). It also allows easy
application of domain knowledge by giving intelligent seeds. Unfortunately, hillclimbing
is also somewhat time consuming and likely will not return the optimal answer, either
because of lack of time or a local maximum.

6.3.2 Waypoints to Complete Plan

Given a target path for the ball, the coach constructs an MASTN in three phases:

Role Making A separate role in the plan is created for executing each needed pass (i.e.
each intersection of straight line segments). A role consists of all of the locations
which the agent will need to move to and where it will kick the ball. This process
creates the set of nodesV and the ordering functionO. In particular, nodes of the
correct types and their associated parameters and pointers are created. The agent
values (members ofA) are temporary, to be replaced by the correct agents later
in the process. Some domain specific requirements for the soccer environment, in
particular for the offsides rule4, are handled here.

4The offsides rule in soccer (and modeled in the Soccer Server) means that a player on one team can not
be closer to the opponent goal than the last defenderwhen the ball is kicked. For the planning, the offsides
rule means that the agents must be aware of when a pass starts in order to stay onsides correctly.
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MASTN Compilation The step adds the edges (E) and their temporal constraint labels
(l). Domain specific knowledge such as the speed of running and kicking and their
normal variations is used to establish the time bounds for execution between the
various events.

Agent Instantiation This step assigns specific agents to the roles in the plan. Role allo-
cation is an important problem in multi-agent systems [e.g., Weiss, 1999]. However,
for this system, we use a simple domain specific algorithm. The assignment is done
using the current formation of the team and a greedy matching algorithm between
the agents’ home positions and the plan’s starting positions.

If the coach knows the current formation, the coach can perform this step. However,
this can also be done by the players, as long as their formation information is consis-
tent. For the players, formation information and consistency is obtained through the
Locker Room Agreement [Stone and Veloso, 1999]. The Locker Room Agreement
is a set of preset knowledge that allows the agents to agree on some aspects of play
and strategy changes based on any shared state features (e.g. the game time).

6.4 Empirical Results

This section presents experiments exploring the effectiveness of the planning approach.
For the experiments, we will be using a set of predefined opponent models. The details of
these models are not especially important for these experiments, but their descriptions can
be found in Section 5.1.4.

The complete approach described above has been implemented. The overall goal of the
experiments is to test the effectiveness of the various parts, including the use of opponent
models and the improvement of a team using the entire approach.

6.4.1 Models’ Effect on Planning

One natural question about the planning process is what effect the opponent models have.
If the opponent models are meaningful, then the resulting plans should be different for
the different models. It is somewhat tricky to isolate just this one effect from the rest
of the system. In order to evaluate the differences in the plans produced using opponent
models, we compare paths by looking at the area between the paths. For example, in
Figure 6.7, the shaded area is the area between the solid and dotted paths. We use this
area because it expresses in simple terms how different two paths are, and consequently,
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how different two plans are. Therefore, the median area difference5 between a set of plans
expresses roughly how much variation there is in a set of plans. The exact numbers are not
especially meaningful, but are useful as comparisons of different sets of plans.

Figure 6.7: Example of the area between paths. The two paths are the solid line and the
dotted line and the shaded area is the area between them.

First we look at the variation in our planning seeds. The planning seeds are designed to
be far apart in the space of possible plans, so the variation gives some idea of the maximum
range we could expect the plans generated by the system to vary. As shown in Table 6.5,
the median area difference is 315. Then, we compare the plans generated when the only
variation is which opponent model is used for planning. Using a different opponent model
for planning gives a median area difference of 138. The difference between opponent
models is somewhat lower than the median difference between the planning seeds. This
lower difference is not surprising because the evaluation of a path depends strongly upon
the starting positions of the agents. The seeds are designed to roughly cover all possible
starting positions of the opponents, so the variation of the hillclimbing seeds should be
higher.

Plan Set Median Area Difference # Comparisons
Planning seeds 315 138
Across opponent models 138 223
Within one opponent model 0 6625
Within one opponent model (unique plans) 116 3073

Table 6.5: Median area differences among several sets of plans. The area difference
roughly captures the variation among the plans.

5We use median rather than mean because the distributions of path areas have heavy tails.
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The variation of the plans observed by using two different models for planning is also
higher than the variation observed for using just a single model. We ran the planner on a
set of 25 problems 53 times in order to understand the variation in the plan returned by the
hillclimbing approach. Not surprisingly, the median area is 0, since the same plan is re-
turned many times. If we restrict our attention to just the set of unique plans6 returned over
these 53 trials, the median area of 116 is still smaller than the median area between plans
returned by different models. This result suggests that, as expected, the model used causes
more variation in the output of the planner than the random variation in the hillclimbing.

6.4.2 Total Game Effect

A team’s overall performance in a simulated soccer game is a product of many tightly inter-
acting factors. The experiments in this section are designed to show that adaptive setplays
can have a positive impact on the overall team performance. It is not a thorough evaluation
of whenandwhy the adaptive setplays have an impact. In other words, these experiments
are an existence proof that the representation and algorithms that we are proposing can
have a positive effect on the performance of the team.

Of the course of a simulation game, setplays are executed for a fairly small percentage
of the total time. Therefore, the absolute effect of setplays on the final score difference
is expected to be small even if the setplays are significantly better than what was present
before. Any significant effect of the overall score of a team by improving the setplays is
an achievement.

The plan execution algorithm was fully implemented in the ATT-CMUnited2000 sim-
ulation soccer team [Riley et al., 2001]. The team ATT-CMUnited2000 was based on
CMUnited99 [Stone et al., 2000] which had fixed setplay plans for each type of setplay
(goal kick, kick in, free kick, etc.). We ran ATT-CMUnited2000 using the old fixed set-
plays and the new adaptive setplays, playing against CMUnited99 in both cases. The
results are shown in Table 6.6.

The results show that the new setplays have a small but significant effect on the overall
performance of the team. The effects on goals against seems to occur for two reasons.
First, setplays such as goal kicks and goalie catches can be dangerous times for the team
because the ball starts so close to the goal. Executing a good play to get the ball upfield
can get out of these dangerous situations. Second, a good offense can be the best defense.
If the team spends more time attacking, the opponent has less opportunities to score goals.
This result is good given the small proportion of the time of the game occupied by setplays.

6At most 2 different plans were returned for a given model and problem.
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# Games Mean goals scored Mean goals against
CMUnited99 fixed setplays 33 2.45 0.30
Planned, MASTN based setplays 56 2.55 0.18

Table 6.6: Comparison of fixed setplays from CMUnited99 to adaptive setplays using
MASTN. With a standard one tailedt-test, the difference in goals scored is not significant,
while the difference in goals against is (p < .01). All games were against CMUnited99.

We wanted to further test the effectiveness of the adaptive setplays. However, there is
considerable effort in linking the plan execution algorithm to the behavior architecture of
a player. The standard coaching language CLang (see Section 2.2.2) was created around
the time we were finishing the previous experiments. We therefore created an algorithm
to convert the MASTN into CLang condition-action rules. This conversion allows the
setplays to be used with any team that understands CLang rather than being restricted to
ATT-CMUnited2000.

Translating the MASTN plan into CLang requires that the effects of actions are en-
coded into conditions of rules. Since CLang supports conditioning on ball and player
position, this is in general possible. However, some aspects of the execution algorithm can
not be encoded because of limitations in CLang. For example, since CLang has no action
representing where an agent should be looking, the agent can not be told to look to where
a relevant action should be taking place.

We use the coachable team ChaMeleons from Carnegie Mellon [Carpenter et al., 2002]
as the recipient of our planning advice. The opponent used is Gemini from the Tokyo In-
stitute of Technology [Coradeschi and Tadokoro, 2002]. We used Gemini for two reasons.
First, Gemini was the opponent in the RoboCup 2001 coach competition, allowing us to
compare performance to what was observed there. Second, since Gemini was not created
by us, nor do we have any knowledge of its behavior algorithms, this provides a more
independent test of the setplays.

In order to assign roles in the plan, the coach needs to know the formation, or arrange-
ment of players on the field, in order to assign closest players to the roles. Therefore,
our coach also sends the players a formation, i.e. a spatial assignment. Details about the
structure of the formation and how it is learned can be found in Section 5.2.1.

We ran a series of simulation games under different conditions.7 Each experimental

7In all of these experiments, we slowed the server down to 3-6 times normal speed so that all agents
could run on one machine. This was done for convenience for running the experiments. We tried to verify
that agents were not missing cycles and while this setup shouldn’t affect outcomes compared to running on
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condition was run for 30 games and the average score difference (as our score minus their
score) is reported. Therefore a negative score difference represents losing the game and a
positive score difference is winning. All significance values reported are for a two tailed
t-test.

Three sets of games were run: a baseline without the coach, the coach just sending a
formation, and the coach sending a formation and planning setplays. Since there are many
interacting factors affecting the performance of a simulated robot soccer team, we are
more interested in the improvement that the setplays has on the coached team rather than
the absolute win/loss value of the coached team against the opponent. Table 6.7 shows the
results.

Condition Score Difference
Baseline (without setplays) -6.5 [-7.2, -5.9]
With formation -9.1 [-10.0, -8.2]
With setplays and formation -4.2 [-4.9, -3.5]

Table 6.7: Mean score difference under various experimental conditions. The score differ-
ence reported is coached team score minus opponent score. The interval next to the score
is the 95% confidence interval.

The use of the setplays significantly (p < 0.01) improves the performance of the team,
both over just the use of the formation and over not using either a formation or setplays.
The effect here is larger than in the previous experiment which compared fixed vs. adap-
tive setplays in ATT-CMUnited2000 since we are comparing no set plays to our adaptive
setplays in this case.

6.5 Summary

This chapter has described Multi-Agent Simple Temporal Networks, a plan representation
that, when combined with the execution algorithm presented, provides for distributed exe-
cution of team plans. We have also presented a plan generation algorithm for the simulated
robot soccer environment.

The generation and execution algorithms are fully implemented in a simulated soccer
coach and team. Empirical results show the positive effects of the setplays on the overall
performance of the team, as measured by goal difference. Additionally, we have created

several machines, the design of the server makes it impossible to say for sure.
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an algorithm to translate MASTNs into CLang (Section 2.2.2) rules, which allows us to
test the setplays with a team not originally designed to execute the plays. Once again, the
empirical results show that the setplays can improve the overall team performance.
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Chapter 7

Relation to Previous Work

The coaching problem touches on many other areas of research. This chapter discusses
the relevant related work and how this thesis improves upon or addresses new problems or
dimensions in each of these areas. Section 7.1 discusses related work on how agents can
incorporate advice (typically from humans) into their decision making. Section 7.2 then
discusses agents generating advice, including Intelligent Tutoring Systems (where humans
receive advice) and formal models for classification learning with a teacher. Section 7.3
discusses agent modeling, one of the important techniques used in this thesis. Section 7.4
discusses related work in coaching in simulated robot soccer, the motivating environment
for most of this thesis work. Section 7.5 discusses relevant work in learning and using
Markov Decision Processes, which are the models used in Chapter 4. Section 7.6 discusses
other algorithms that analyze behavior traces. Finally, Section 7.7 discusses multi-agent
plan representations.

7.1 Agents Taking Advice

A variety of work has been done on using advice (often from humans) to improve au-
tonomous agent performance. While this thesis has focused on advice generation, advice
taking comes up in several places.

In Chapter 3, the predator agent in a predator-prey environment is receiving advice
from a coach. The predator is a reinforcement learner, quite similar to Clouse [1995].
The primary difference is that our Q-learner does not receive reward simply for following
the coach’s recommended action. Another modification of an advice taking Q-learner
is to discard state information from before advice is applied, with the assumption that the

129
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coach gives advice when recent actions were wrong [Clouse and Utgoff, 1992]. Lin [1992]
presents another alternative where an entire sequence of actions is taken, along with the
reward expected by the coach. Another alternative has been used in the RoboCup mid-
size league. Takahashi et al. [2004] use human demonstrations as recommended actions
to seed the action policy of a reinforcement learner.

In a different area of reinforcement learning, Driessens and Dz̆eroski [2004] present
a thorough study of incorporating guidance (in the form of example trajectories) intore-
lational reinforcement learners. A relational learner is one where the value functions and
policies are represented by logical formalisms such as first order logic instead of by tables
or statistical function approximaters. Across several domains and with several different
learning algorithms, the authors discover that guidance does help, but the parameters of
when and how much guidance to provide varies with the underlying relational learner.

An alternative approach to incorporating advice into a reinforcement learning is pro-
vided by Wiewiora et al. [2003]. The reward function is modified using variants of poten-
tial based reward shaping [Ng et al., 1999]. They present two ways to incorporate advice,
both of which have limitations. With “look-ahead” advice, the agent’s learned Q-table
must be post-processed to extract the optimal policy. With “look-back” advice, the learner
must use an on-policy algorithm and the authors suggest that the learning time will be
longer.

The algorithms in Chapter 3 are another alternative among the many approaches to
incorporating advice into a reinforcement learner. All of these approaches are generally
successful in using advice to improve reinforcement learning speed.

A closely related research area is that of imitation. Similar work has gone under
many different names: learning by demonstration [Kaiser et al., 1995, Bakker and Ku-
niyoshi, 1996, Atkeson and Schaal, 1997], behavior cloning [Sammut et al., 1992,S̆uc
and Bratko, 1997], learning by watching [Kuniyoshi. et al., 1994], and behavior or agent
imitation [Dautenhahn, 1995, Price and Boutilier, 1999, 2000]. In all the cases, the robot
or agent is given example(s) of some task being done successfully (often from a human
demonstration), and the agent’s goal is to perform the same task. The demonstration of
the task can be seen as a set of advised actions for the agent, quite similar to Lin [1992].

Imitation is used in Section 5.2. The coach uses example executions to construct team
models. The content of these models is then provided as advice for the agents’ execution.
From this perspective, the coach modeling and advice provides yet another scheme for
imitating, though unlike the approaches above, the imitation occurs for an entire team of
agents.
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7.2 Agents Giving Advice

In addition to agents receiving advice, past work has considered agents generating advice.
One group of past research is Intelligent Tutoring Systems. These systems are designed to
help human students learn, much like a private human instructor. The architecture of these
systems is fairly standard at this point [Polson and Richardson, 1988]. The three primary
components are:

Expert This component is a model for how the task should be performed. The expert
could, for example, be a program that performs in an ideal manner or be a specific
task structure that the student is supposed to learn.

Student Model The goal of this component is to understand and track what the student
knows, based on the student’s interaction with the system.

Tutor During learning, the expert and student model will have discrepancies. The tutor
provides advice, questions, and other output to try to move the student towards the
behavior of the expert.

The user interface between the student and the tutoring system is also an important com-
ponent, but since there it has less direct resemblance to the coaching of automated agents,
I will not examine this issue here.

One significant problem in tutoring systems has been the rigidity of the expert module.
In cases where a specific, declarative task must be learned [e.g., Rickel and Johnson, 1999],
an expert which simply has the “right answer” can be effective. This simple form of an
expert module is quite different from our coach agents that must learn about the task in
order to provide advice.

Creating a good student model that can accurately track a student as he learns has
been a major endeavor for cognitive psychology [e.g., Anderson et al., 1990]. Knowledge
tracing [Corbett and Anderson, 1995] deals with how to estimate what concepts a student
knows based on simple correct and incorrect answers to quizzes. In this thesis, a similar
problem is faced by the coach, which must estimate what the advice receivers can do (see
Chapter 3). We use a simple scheme based on Q-learning. While this Q-learning scheme
proves to be effective for the environment we consider, the number of repetitions required
probably make the techniques presented here less applicable to humans.

Intelligent Tutoring Systems have been developed in too many application areas to list
here, but most train for solitary problem solving. Recently, automated training systems
for team tasks have gotten some attention [Miller et al., 2000, Rickel and Johnson, 2002].
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The automated agents can function both as team members and as coaches for the trainees.
Coaching for team tasks has an added dimension that the student must learn to think about
what the other agents are doing. In order to guide the student to considering the correct
things about the other agents’ states, the coach needs a greater ability to monitor and advise
about the student’s internal state.

The idea of an agent teacher has also attracted attention from machine learning the-
orists [Goldman et al., 1993, Goldman and Kearns, 1995, Shinohara and Miyano, 1991,
Jackson and Tomkins, 1992, Goldman and Mathias, 1996, Mathias, 1997]. The framework
considered is usually some variant of a teacher presenting examples of a target concept to
a learner who is trying to classify them. The primary problems addressed are definitional.
How does one define a good teacher? What if a particular teacher teacher only works with
one particular student? These questions have not, to this point, been especially important
for us to consider as we measure coach performance by testing with a variety of agents. As
we move to more rigorous and first principles based evaluations, these questions may be-
come more relevant. However, the theory framework does not currently match our coach-
ing problem very closely, primarily because we are not working with classification tasks
and we use a richer action based advice language.

7.3 Agent Modeling

Agent modeling has been an important topic in computer science and the literature avail-
able is correspondingly vast. Since one of the aims of this thesis is to examine how op-
ponent modeling can be applied to the coaching problem, this section will briefly dis-
cuss some of the work in agent modeling, especially as it pertains to adversary modeling
and adaptation. We’ll briefly review approaches for agent modeling in simple turn taking
games and repeated matrix games before drawing distinctions with our work.

In turn taking, perfect information games such as checkers and chess, pruned brute
force search of the minimax tree combined with intelligent, domain specific evaluation
functions has been the standard technique, such as in checkers with Chinook [Schaeffer
et al., 1992]. However, in cases where the opponent is not the optimal player, better
performance may be achieved through modeling the opponent. Carmel and Markovitch
[1996] presentM∗, a modified minimax search incorporating a model of the opponent.
Further, Billings et al. [1998] argue that in order to play games that involve bluffing and
partial information such as poker, opponent modeling will be necessary to achieve high
performance. Their system uses a parameterized version of the agent’s internal evaluation
function to estimate the way the opponents value their hands. That information is then
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used in the search and evaluation of moves.

Repeated matrix games have also been a popular domain for considering opponent
modeling. Carmel and Markovitch [1998] present the US-L∗ algorithm to infer a finite
automaton that explains the opponent’s behavior, and then find an optimal response. Gmy-
trasiewicz and Durfee [1995] formalize recursive modeling where each agent is consider-
ing what the other agent thinks. This framework has also led to interesting complexity
results for trying to play nearly optimally against some fixed set of strategies, such as Tur-
ing machines, boolean functions, or simple functions of simple history statistics [Fortnow
and Whang, 1994, Freund et al., 1995]. The notion of “nearly optimal” requires careful
definition and different variants are used for different purposes. There are some positive
results, such as Freund and Schapire [1999] who present an algorithm whose reward re-
ceived is close to what could have been received from the best fixed strategy.

From a high level, these models answer the coaching sub-question, “How can models
be used to determine desired actions for agents?” The models in Chapter 5 are used to
answer the same question. However, the coaching environments we consider in this thesis
generally have continuous state and action spaces as opposed to the discrete spaces dis-
cussed above. Therefore, the model representations must be very different and we have a
more relaxed definition of success.

Modeling has also been applied in larger, real-time domains with continuous state and
action spaces. Using an agent’s own behavior representation to infer opponent actions
has been used by Tambe and Rosenbloom [1995] in an air combat domain and by Laird
[2001] in Quake, a real-time first person shooter computer game. We explicitly avoid
having our agent models be based on the agent’s internal execution policy because the
coach is not an agent which executes actions in the environment and we want to provide
as much generality as possible in our models.

Work on agent modeling has also occurred in the simulated robotic soccer community.
Wünstel et al. [2001] use self organizing maps to classify the movements of agents. Miene
et al. [2004] use coarsely discretized state and action descriptions to arrive at a “qualita-
tive” motion model which can be used to predict impending offside situations. Also in
RoboCup, but for the small size robots, Han and Veloso [1999] use Hidden Markov Mod-
els (HMM) to recognize behaviors of robots, with each HMM representing a model of a
behavior of a robot. These models are focused primarily on recognizing the behavior of
an agent or team and not on how to use such a model to improve performance.

The ISAAC system [Raines et al., 2000] analyzes past games to look for patterns at
both the individual agent level and the team level (see Section 7.4 for more on ISAAC).
These models have similar structure to the passing models presented in Section 5.2.2.
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Kaminka et al. [2003] also create team models to be used in predicting the future actions
of a team. Events like passing and dribbling are extracted from the observation data and are
then considered as symbol sequences. Repeated patterns in these sequences are found and
used for prediction. The primary difference with our work is representational; our models
are based on clusters and decision trees and their work uses compact representations of
repeated subsequences.

Section 5.1 argues that selecting between opponent models online rather than trying
to learn from scratch is a promising avenue for dealing with sparsity of data in online
setting. This same idea is discussed and tested in a predator-prey domain by Denzinger
and Hamdan [2004]. Their models, which they call “stereotypes,” have a very different
structure and use different selection algorithms, but end goal is the same.

7.4 Coaching in Robot Soccer

Coaching fits naturally into the format of robot soccer. To my knowledge, one of the first
teams to use an online coach was Kasugabito [Takahashi, 2000]. Based on the score differ-
ence, time remaining, and ball’s path, the online coach would adjust the team’s formation.

Since then, formation learning and switching has been a popular approach. Our hill-
climbing based learning of formations is presented in Section 5.2.1. The Sharif Arvand
team uses standard image processing algorithms on windowed histograms of player loca-
tion to find regions where players frequently are [Habibi et al., 2002]. Virtual Werder [Drücker
et al., 2001] uses a learned neural network to recognize formations and then a hand-coded
decision tree to change the team’s own formation. Our work predates all of these ap-
proaches. While there are differences among these algorithms, all have the same goals and
perform reasonably well.

Besides the opponent modeling work described in Section 7.3, the other important
predecessors to online coaching systems were the online commentator systems. ROCCO,
BYRNE, and MIKE [Andre et al., 2000, Tanaka-Ishii et al., 1998] are three of the first sys-
tems. While there are important differences in system structure, presentation, and dialogue
management, all the systems track various game statistics to match observed behavior to
pieces of dialogue. This understanding of the game from observation is an important com-
ponent of many coach systems.

One of the first systems to analyze a team’s play to provide advice was ISAAC [Raines
et al., 2000]. ISAAC used decision tree learning to identify rules describing the conditions
for when goals were and were not scored for and against a team. ISAAC had no automated
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way for the agents to incorporate advice; the output was descriptive natural language which
human developers could use to change their team. This thesis improves on this work by
providing easily operationalizable advice for similar style models.

Online coaching with automatically incorporated advice gained importance in RoboCup
2001 with the creation of the online coach competition. The community (including my-
self) created the language CLang (as described in Section 2.2.2) to allow coaches and
teams to inter-operate. The language has been used in all subsequent coach competitions.
UNILANG [Reis and Lau, 2002], a competing attempt to create a standard language, did
generate some ideas which were drawn into CLang. In addition to the research presented
throughout this thesis, the other team from that time which published opponent modeling
research results was the Dirty Dozen [Steffens, 2002]. The focus of the work was Feature-
Based Declarative Opponent-Modeling (FBDOM) where opponent models use features
which are associated with actions. In contrast to most of this thesis, Steffens’s models are
created by hand. These models can then be matched to observed behavior similar (as in
Section 5.1.2) or used to imitate a team (as in Section 5.2).

In addition to the formation learning and adaptation techniques mentioned above, I
know of two other coaches which make use of machine learning. The UTAustinVilla
coach [Kuhlmann et al., 2004] learns and uses similar opponent models to ones described
in Section 5.2, though with some important representational differences. Namely, while
they do use decision tree learning, they do not perform the clustering step that we do.
Also, they use a much larger set of features including distance to the goal and the current
score. The Sharif Arvand coach [Ahmadi et al., 2003] uses a two-layered case based
reasoning approach to predict the future movements of the player and the ball, though it is
not specified in that paper how predictions are translated into useful advice.

7.5 Markov Decision Processes

Markov Decision Processes (MDPs) [Puterman, 1994] have been one of the most used and
most studied formalisms in artificial intelligence research. Chapter 4 continues in this line
by presenting a set of algorithms to learn an abstract MDP from observed executions.

In this process, a Markov Chain is first constructed and then an MDP is formed from
the Markov Chain. Shani et al. [2002] also explain a mechanism for Markov Chain to
Markov Decision Process conversion. However, for them the Markov Chain describes
how the system acts without agent actions. They use a simple proportional probability
transform to add the effects of the actions. In this thesis, the Markov Chain represents the
environment with agent actions and we need to infer what those actions are.
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In Chapter 4, the state abstraction function uses a factored state representation. The
AND/OR tree structure is one simple example of using a factored representation to make
reasoning easier or more efficient. Dean and Kanazawa [1989] give the basic represen-
tation of a factored MDP as a Bayes net. A number of authors then give algorithms to
use this sort of compact representation to do more efficient reasoning [e.g., Boutilier and
Puterman, 1995, Koller and Parr, 1999, Guestrin et al., 2001, Boutilier et al., 2000]. These
techniques have also been extended to multi-agent games [Koller and Milch, 2001] and
distributed planning [Guestrin and Gordon, 2002]. Our transition classification scheme
described in Section 4.3.3 is another use of a factored state representation.

The AND/OR tree can also be viewed as one structure for representing context-specific
independence (CSI). In terms of Bayes nets, CSI means that two variables are independent
given somevalues of another variable. Note that in a standard Bayes net, the lack of an
arc means that the two variables are (conditionally) independent forall values of the other
variables. Geiger and Heckerman [1996] present Bayesian multi-nets as a way to represent
CSI. A series of separate Bayes nets are constructed and the difference in the edges of each
network represents the independencies. Boutilier et al. [1996] build on this work to present
ways that such dependencies can be discovered and utilized for normal Bayes nets where
the conditional probabilities at the nodes are represented by trees. Chickering et al. [1997]
then presents a heuristic search for finding such representations given data. The AND/OR
trees are an easier to use but less expressive manner of representing CSI. An OR represents
that if one operand factor has a non-null value, it is independent from the other operand
factor.

In this thesis, the state abstraction is given to the systema priori. The learning of a
good state abstraction has long been a pursuit of AI and we will not attempt to provide a
survey here. However, use of any of these techniques in order to learn the abstract state
space while learning the transition model (as suggested in Section 8.4.1) is an interesting
direction for future work.

The abstract MDPs learned in this thesis also use temporally extended abstract actions.
Abstract actions have a long history, especially in the planning literature [e.g., Korf, 1985].
Recently, several formalisms for abstract actions have been presented for MDPs, notably
in the context of reinforcement learning. All are based on semi-Markov Decision Pro-
cesses (SMDPs) [Puterman, 1994]. SMDPs extend MDPs with a probabilistic duration in
each state. Options [Sutton et al., 1999] are intended to augment an MDP with temporally
extended actions. Each option includes a partial policy and probabilistic termination con-
ditions. An MDP with options can then be modeled as an SMDP. By leaving the base level
MDP actions in the SMDP, an optimal policy for the SMDP is guaranteed to be optimal
for the MDP. Hierarchies of Abstract Machines [Parr and Russell, 1998] and the MAXQ



7.6. LEARNING FROM EXECUTION TRACES 137

Value Function Decomposition [Dietterich, 2000] instead focus on incorporating domain
knowledge in the form of subtask decompositions. These subtasks form a graph structure
where each node represents a task and the policy for each task can only select between
that task’s children. By removing the base level actions, the state and action spaces at each
subtask can be reduced, which makes learning much easier. However, the decomposition
restricts the space of possible policies, and therefore a poor decomposition can lead to a
sub-optimal policy.

All of these schemes explicitly model time taken for the abstract actions. This time is
currently ignored in the MDP learning in Chapter 4. Extending the learning process to use
any of the above formalisms is a good direction for future work (see Section 8.4.1).

7.6 Learning from Execution Traces

An important part of a coach agent as described in this thesis is the ability to analyze a
trace of past behavior and learn from it. Phrased in this general way, many other learning
algorithms solve a similar problem. In this section we will discuss two such areas that
learn what could be considered advice: control rule learning and chunking. We will first
briefly review these areas and then discuss how coaching differs from both.

Many AI systems perform some sort of search, and in these systems, domain-specific
search control heuristics, sometimes called control rules, can help improve the speed of
search or the quality of the solution returned. Various approaches have been given to learn
such control rules. In the LEX system [Mitchell, 1983], which solves integral equations in
closed form, Explanation-Based Generalization [Mitchell et al., 1986] is used to process
the trace of a problem solving episode, along with a complete and correct domain theory,
to produce search control rules that are guaranteed to be correct. Minton [1988] takes
a similar approach in the PRODIGY [Veloso et al., 1995] planning system. Other ap-
proaches [e.g., Borrajo and Veloso, 1996, Estlin and Mooney, 1997] relax the requirement
for complete and correct domain theories and learn possibly incorrect control rules which
are then refined and corrected as needed.

Chunking originally came from psychology as a model of learning in human and an-
imals (see Laird et al. [1986a] for background). The basic idea is that as an agent goes
through experiences, repeated patterns of symbols can be “chunked” into one symbol,
allowing better or faster recall or execution.

The SOAR architecture [Laird et al., 1987] is intended as a model of general cognition.
All reasoning takes place as search in problem spaces. This uniformity of execution allows
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a single learning algorithm, namely chunking, to learn in all parts of the system [Laird
et al., 1986b, 1984]. At the completion of a problem solving episode, the goal and solution
are considered as a candidate chunk, with much of the same generalization reasoning as
goes into control rule learning.

In both control rule learning and chunking, the reasoning is very closely tied to the
decision making process of the system they are trying to improve, even as far as having a
complete and correct logical model of the system [Minton, 1988]. Coaching provides an
abstraction of the decision making process through the concept of advice. Because of this
abstraction, different agents can successfully implement and use the advice, though more
research remains to be done on understanding how much of the underlying agents needs to
be understood by the coach (see Section 8.4.2). Further, because of this abstraction layer,
the coach does not have access to the full reasoning process of the agent.

7.7 Multi-Agent Planning

Chapter 6 introduces Multi-Agent Simple Temporal Networks (MASTN) as a plan repre-
sentation for execution by distributed agents. MASTNs refine Simple Temporal Networks
(STNs) to be used in the multi-agent case. STNs have been used to solve scheduling prob-
lems [e.g., Morris and Muscettola, 2000] and the execution algorithm we present uses the
algorithms presented by Muscettola et al. [1998] as subroutines.

Other researchers have suggested representations for multi-agent plans. A number
of models of multi-agent systems have been proposed recently [Boutilier, 1999, Peshkin
et al., 2000, Bernstein et al., 2000, Xuan et al., 2001, Pynadath and Tambe, 2002a]. For all
of these models, solving the model yields a joint action policy for the agents. This policy
can be seen as a universal plan for the agents. However, the dimensionality of the model
means that such polices quickly become difficult to construct or communicate. Therefore,
a naive use of the models would not be an effective way to create and communicate about
team plans. Indeed, one of the motivations for creating the COM-MTDP model [Pynadath
and Tambe, 2002a] was to be able to evaluate algorithms which use more efficient reason-
ing processes. The MASTNs that we introduce are one compact way to represent a joint
plan.

Bowling et al. [2004] introduce tactics, plays, and play books as multi-agent plans. In
the context of small size robot soccer, they define tactics as single agent, primarily reac-
tive behaviors. Plays are specifications of roles by the sequence of tactics they should be
performing. The play book is a collection of plays. This approach addresses a number
of orthogonal issues to those addressed by the MASTNs. Most notably, the strength of
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MASTNs is in handling agents whose beliefs about the world may be inconsistent and
allowing them to coordinate successfully. While the play-based approach must consider
multi-agent problems such as role assignment, one central controller makes those deci-
sions.

Teamwork theories must also consider representing and manipulating multi-agent plans.
SharedPlans [Grosz and Kraus, 1996] and Joint Intentions (as expressed in GRATE∗ [Jen-
nings, 1995]) are normative specifications of mental attitudes of agents in a team. These
teamwork theories are meant to be used to guide the design of agents. Both use the con-
cept of a recipe where agents are committed to performing possibly ordered actions. While
both approaches catalog recipe failures and specify how to deal with them, MASTNs pro-
vide a more specific framework for representing and reasoning about coordination and
failure through temporal constraints. In particular, those approaches specify how the be-
liefs, desires, and intentions should change in response to team events, but the approaches
leave open how those beliefs, desires, and intentions are translated into actions. Therefore,
while the SharedPlans and Joint Intentions frameworks are more general, MASTNs pro-
vide more of a solution if one can represent the needed coordination and failure modes in
the temporal constraints of the network.

STEAM [Tambe, 1997] draws on both SharedPlans and Joint Intentions. The key
innovation is the introduction of team operators. Each agent maintains its own perception
of the state of execution of these team operators. STEAM is then a system for maintaining
as much consistency as needed and possible among these operators. Thus, our MASTN
representation and algorithm can be seen as an application of these same concepts into a
representation with temporal constraints.

Intille and Bobick [1999] also use temporal constraints to express coordination. How-
ever, their temporal constraints are fuzzy and qualitative, such as “A around B” meaning
that event A should occur around the same time as B. The other major difference is that the
nodes in their temporal network represent agent goals, not particular events. They apply
their representation to plan recognition in records of human American football. In other
words, similar temporal constraints and reasoning are used to solve a different problem.
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Chapter 8

Conclusion

Coaching is a well known relationship among humans. This thesis has explored a range
of issues that arise when one automated agent is coaching another. Coaching between
automated agents is a recent development and this thesis helps to define and develop this
largely unexplored area. The breadth of the coaching problem is reflected in this thesis.
Further, this thesis represents many years of experience in working with agent coaching
agent systems.

This chapter reviews the scientific contributions of the thesis (Section 8.1), discusses
some insights into coaching through my long experience in this problem domain (Sec-
tion 8.2), considers the insertion of knowledge into the coach agents (Section 8.3), and
presents some of the promising future research directions that build on this thesis (Sec-
tion 8.4).

8.1 Contributions

This thesis makes several important scientific contributions:

• A study of advice adaptation under various limitations, empirically tested in a
predator-prey environment.

One important task of a coach is to understand the limitations of the agent(s) re-
ceiving advice. A first step towards addressing this problem was made through ex-
perimentation in a predator-prey environment. Several simple learning algorithms
based on Q-learning were given for the advice-receiving predator agent. All of these
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algorithms incorporate advice in the form of a recommended action from the coach.
Coaching algorithms of varying complexity that generate this advice were shown.
Limitations on the predator’s actions, the communication bandwidth, and the preda-
tor’s memory were explored and it was shown that the coach could learn about the
agent’s limitations. Limiting communication and memory predictably reduced the
predator’s performance. The experiments support the idea that the more limitations,
the more important it is for the coach to learn in order to provide more effective
advice.

• A set of algorithms for learning an abstract Markov Decision Process from ex-
ternal observations, a given state abstraction, and partial abstract action tem-
plates.

A coach must have knowledge in order to provide useful advice. We contribute one
set of algorithms for a coach to acquire useful knowledge of the environment. The
coach observes past executions of agents in an environment. Notably, those execu-
tions contain no explicit information about the actions taken by the agents. From
those executions and a given state abstraction, the coach constructs a Markov Chain.
The state abstraction is factored, and the factors are combined with an AND/OR
tree that we introduce. The Markov Chain represents how the environment changes
while agents are acting. From the Markov Chain and given abstract action templates,
a Markov Decision Process is constructed. These abstract action templates contain
no probabilities. They do specify sets of primary and secondary transitions. Pri-
mary transitions represent the normal or intended effects of an action and secondary
transitions represent other possible results.

Given the transition model in an MDP, we can add arbitrary rewards, solve the MDP,
and generate advice based on the optimal policies. The algorithm is not specific to
the robot soccer domain. We show that this learning process is effective at producing
useful advice in several variants of simulated robot soccer and in the RCSSMaze
environment which we constructed.

• Several opponent model representations, learning algorithms for those models,
and advice generation algorithms using those models.

Three different models of team behavior were created. The first probabilistically
predicts opponent movement in response to the planned actions of our team. While
these models were written by hand, an algorithm was given to select online between
a set of predefined models. The effectiveness of this algorithm was shown experi-
mentally.
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The second model represents the general spatial relationships of a team of agents
through a “formation” in simulated robot soccer. The formation of a team is learned
through observations of past performance. When playing a given opponent, the
formation of a previously successful team can be imitated. The learned formations
were shown to make a significant difference in a team’s performance.

The last of the models captures patterns in the actions of a team. Using clustering
and decision tree learning, models which capture the passing patterns of a simulated
robot soccer team can be learned from observations of the team playing. Advice can
then be generated to predict an opponent’s behavior or to imitate a team that was
successful. While the advice thus generated was not shown to have a large impact,
the models do appear to be capturing behavior patterns of a team.

• Multi-Agent Simple Temporal Networks (MASTN): a novel multi-agent plan
representation and accompanying execution algorithm.

Another important question in a coaching relationship is how the advice is struc-
tured. Throughout much of this thesis, we used the CLang advice language created
by the simulated robot soccer community (including myself). However, making a
language that is easy to use and effective for the agents is an important topic. We
contribute MASTNs as one particular language for advice as plans for distributed
execution. MASTNs refine Simple Temporal Networks, using temporal constraints
to express multi-agent coordination. We also contribute a distributed execution al-
gorithm which allows the distributed agents to easily handle plan coordination and
detect plan failure.

A plan generation and execution system is fully implemented in the simulated robot
soccer domain. We experimentally show that the use of the plans has a positive
effect on the performance of several teams.

• Largest empirical study of coaching in simulated robot soccer.

This thesis is heavily experimental and motivated by the idea of coaching in simu-
lated robot soccer. Thorough experimentation has been carried out in a variety of
experimental conditions. The experiments in this thesis represent over 5000 games
of simulated robot soccer and were generated with over 2500 hours of computer
time. In contrast, the total number of official games from all RoboCup competitions
between 2000 and 2004 is only 1223. This data is all available upon request (see
Appendix C for details) and provides a valuable resource for researchers in this area.
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8.2 Qualitative Lessons

In addition to the possible future research directions discussed in Section 8.4, there are
some qualitative lessons about coaching environments that may be useful to others. While
these are not fully substantiated scientific claims, I believe that these insights can help
others to further understand the coaching problem.

• The coach and advice receivers are a tightly coupled system.

While part of the appeal of having a coach agent is to modularize the decision mak-
ing process of agents in the environment, the coach must be able to fundamentally
affect the behavior of the agent. Often in computer systems, and perhaps more so
in agents, there are dependencies of which the designer is not aware. Incorporat-
ing advice can reveal these unarticulated assumptions and dependencies. Simply
specifying a language and then separately developing a coach and advice receiver is
likely to lead to a poorly performing system when they are first brought together.

• Coach learning will require iteration to achieve the best performance.

Much of the machine learning that takes place is a sort of “one-shot” learning. Some
training data is supplied, some intelligent algorithms are applied, and then the result
is evaluated. Coaching will require iteration over the learned models, either with a
human in the loop or without, to achieve the best performance. For example, in the
RCSSMaze environment, I had originally made an error in the transition specifica-
tions for an action. This error resulted in the agent moving directly into a wall on
almost every trial. Both human provided and learned knowledge must be subject
to revision and improvement through iteration. Coaching should be a continual in-
teraction and not one-shot advice. Iteration was naturally done during development
and in the RCSSMaze environment we explored somewhat the results of learning an
MDP from a previous MDP’s execution.

• A tradeoff exists in how much of the state space to cover with advice versus how
good the advice is.

The choice is faced by both the human designer and the coach agent. For example,
in the MASTN work, the coach is only giving advice for the few seconds of our
setplays and gives no help for the rest of the game. However, the representation is
specialized for this task and is quite effective. The MDP based advice attempts to
advise about a much larger part of the game. However, restrictions in the amount of
data, amount of communication bandwidth, and language structure limit how spe-
cific the advice thus generated can be. Less specific advice may help the agents less
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by either providing less guidance or grouping together states which really should be
receiving different advice. While simultaneous improvements on both dimensions
are certainly possible, finding the correct balance is an important part of creating an
effective coach agent.

• Different observability by the coach and agents can be ignored somewhat, but
will need to be considered at times.

In much of the work here (with the MASTNs for setplays being the exception), the
coach was virtually ignoring the fact that the agents had less than perfect knowl-
edge of the world state. Partially, this was successful because, as a domain expert,
I chose for the coach to use world features that the agent would probably know.
However, the partial observability can cause problems. In an earlier version of one
of the RCSSMaze 0 experiments, the agent continually had problems performing an
unadvised action at a particular point in the maze. It turned out that the agent did
not know one of the walls was next to it and therefore matched the world state to
the advice incorrectly. It is not clear at this point how much of an effect partial ob-
servability had on the other experiments. The coach’s learning systems were greatly
simplified by ignoring the problems of partial observability and effective advice was
still generated. However, it is not clear if this will continue to work.

• Analyzing the past behavior of an agent is most useful only if the future will
look similar to the past.

Advice is useful to an agent only if it helps that agent in situations encountered in
the future. However, the coach will generally analyze past performance data in order
to produce advice. The implicit assumption here is that the future will look like the
past. This may not always be true, especially in the short term. In a soccer game, if,
after a goal is scored, a coach advises the players about how they should have played
when the score was tied, the advice may not help short-term performance. Similarly,
in the predator-prey environment we encountered the problem that the advice about
one particular state just experienced was just as likely to be used by the agent as
advice about any random state.

8.3 Insertion of External Knowledge

At various points throughout the thesis, a domain expert (namely, the author) provided
knowledge to the various coach agents. Credit for the success of the coaches must there-
fore be given not just to the algorithms presented, but also to the quality of the knowledge
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provided. Thorough studies of the exact effect of providing better or worse knowledge to
the system are outside the scope of this thesis, but it is important to acknowledge that ex-
ternal knowledge was inserted. This property is in no way unique or even unusual among
AI systems. Based on previous experience, the designers of AI systems must make many
choices.

This section briefly discusses four types of knowledge that were given to the system.
We will not cover every instance, but this discussion should help the reader better under-
stand what it takes to successfully apply the algorithms given in the thesis.

Representational ChoicesThe choice of representation almost always restricts the space
of models that can be considered. For example, we see this with the choice of
Gaussians for the probability distributions in Section 5.1.3, the use and conversion
of Autoclass C clusters in Section 5.2.2, and the selection of features for the rule
learning in Section 5.2.2. These choices were made because we believed that the
models which could be expressed in these representations were sufficient for the
tasks.

Abstractions In several places, we provide the coach with abstractions to use in reasoning
about a problem. The abstract state and action spaces discussed in Chapter 4 are the
most obvious examples, but the choice of events for the planning in Chapter 6 and
the particular models in Section 5.1.4 are also abstractions that were provided to the
coach. While some general formats and representational tools are given, providing
good abstractions still requires knowledge of the domain.

Training Data A very important, but sometimes ignored, aspect of a learning system is
the choice and quality of the data provided to the system. This aspect is especially
important in the team models in Section 5.2, where we chose a particular team to
imitate. As demonstrated with the environment models in Section 4.4.3, the proper-
ties of the training data can greatly affect the quality of the learned model. In some
cases, one simply has to use whatever data is available, but the importance of the
training data quality on overall effectiveness can not be ignored.

Algorithm Parameters One of the most obvious places where external knowledge is ap-
plied to the system is in the choice of parameters to the algorithms. The machine
learning literature is full of algorithms with numerous parameters that must be set
“appropriately” for the problem at hand. At several points in this thesis, informal
experimentation was done with algorithms to tune parameters.

Besides clearly acknowledging the use of external knowledge in the coach agents,
this discussion allows us to make two conjectures about knowledge insertion. First, even
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though some domain specific work may have to be done (by providing knowledge in the
forms above), we believe that the framework and algorithms of this thesis allow an agent
designer to more efficiently create an effective multi-agent system than if they had to
start from scratch. Second, the boundaries of the system can be further expanded in the
future. Each instance of knowledge insertion above is a candidate for future learning. With
appropriate future work, a coach may be able to learn the required knowledge rather than
having it provided. This possibility is explored in several places in the next section.

8.4 Future Directions

Agent to agent coaching is still a relatively new area in AI and this thesis opens a variety of
future work directions. We present some future research directions expressed as possible
thesis titles.

8.4.1 Abstract MDP Learning

The learning of an abstract MDP as a model of the environment (Chapter 4) proved to be
useful to provide advice. However, there are a number of improvements which could be
made.

• Recursive Learning and Verification of Abstract Markov Decision Processes

Small errors in the MDP can cause a large performance degradation. Developing
the correct abstract action templates required several iterations and minor tweaking
of the system was needed to obtain the best performance. The potential exists to
find and fix many errors in the learned MDP if the coach can experiment with and
observe the MDP based advice being used. Recursively refining the MDP, possibly
through learning processes similar to those already proposed, has great potential to
improve the quality of the MDP model. While we experimented with this idea in
the RCSSMaze environment in Section 4.4.3, the design and evaluation of better
learning algorithms is a very interesting future direction.

• Learning Hierarchical Semi-Markov Decision Processes from External Obser-
vation

The environment models learned in this thesis are abstract MDPs. However, as
discussed in Section 7.5, even if the lower level can be modeled as an MDP, us-
ing abstract actions generally requires aSemi-Markov Decision Process (SMDP).
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Unlike an MDP, an SMDP includes a notion of time taken by the various actions.
Notably, these durations affect the time-based discounting. In the simulated soc-
cer environment for example, the learned MDP goes through many more transitions
while dribbling as compared to passing even though they may take approximately
the same amount of time in the game. The extension of the learning algorithms in
Chapter 4 to handle time in a SMDP, possibly using one of the formalisms described
in Section 7.5, merits further attention.

In addition to handling the time taken by actions, handling hierarchical actions
would be useful. Several of the abstract action formalisms are designed specifi-
cally to handle a hierarchy of abstract actions. Learning such a hierarchy and/or its
parameters from external observation data is a potentially very useful extension of
the work presented here.

• Refining State Abstractions for Markov Decision Process Learning

In the MDP learning presented here, the state abstraction was given explicitly by
the user. Past work in automatically learning state abstractions (see Section 7.5)
could be useful in helping the user create such an abstraction. Further, some of
those algorithms create an abstraction while learning to solve an MDP. Similarly, it
may be possible for the state abstraction and transition model learning to take place
simultaneously. If the transition learning could effectively identify places where
the abstraction is too general or too specific, learning speed and accuracy could be
improved. The abstract state learner could suggest refinements and abstractions to
be considered by the transition learner.

8.4.2 Adapting to Advice Receivers

One challenging problem faced by a coach is the adaptation to the limits and peculiarities
of a particular advice receiver. Chapter 3 began an exploration of how a coach could learn
about agents’ limitations and how the parameters of the environment affect the coach’s
learning, but much more work remains to be done.

• Learning About Agents While Giving Advice

The coach in Chapter 3 had a simple Q-table based model of the actions that an agent
could perform. Moving to more abstract advice and more complicated limitations
will require better representations for reasoning about the limitations of an agent.
For example, in the soccer environment, it is not that one team can’t dribble while
another can, but rather that the speed, safety, and overall effectiveness of dribbling
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will vary between teams. Creating domain-independent representations for agents’
actions and their response to advice needs further research attention.

Also, in any reasonably complex advice language, there will almost certainly be dif-
ferences in interpretation or just plain unsupported features among different advice
receivers. Anyone familiar with the history of the coach competition at RoboCup
knows that the various coachable agents have all had quirks in their interpretation
of CLang. Differences in interpretation and other behavior oddities will likely oc-
cur in any reasonably complex advice receiving agent. Since one of the goals of
coaching is to be able to work with different teams of agents, the coach will need
some (preferably automated) way of learning about and adapting its advice to these
differences in interpretation.

• Talking Back: How Advice Receivers Can Help Their Coaches

Throughout this thesis, the communication has been one-way, from the coach to
the advice receivers. The coach is assumed to get all of its knowledge about the
agents by observing their behavior. However, any person who has been in a teaching
or coaching role knows that it can be much more effective if the advice receiver
understands how to ask for help or can articulate their confusions. Of course, a
coach can not trust an advice-receiver to fully understand its confusions or to ask
the right questions. However, it would seem that an agent could similarly be helpful
to a coach. For example, the Instructo-Soar agent [Huffman and Laird, 1995] is able
to ask a human for help or explanation. How could such algorithms be adapted to
agent coaching agent scenarios? What should the agent to coach language be? How
should the coach use the information from the agent? When should an agent ask for
help or express confusion?

• What I See and What I Don’t: What a Coach Needs to Know About Partial
Observability

As discussed in Section 8.2, partial observability for the agents has largely been
ignored by our coaching algorithms. While this has been effective, understanding
why it has and when it will continue to be are significant problems. Reasoning about
the partial observability of the agent will almost certainly be more challenging for
the coach. Under what circumstance is it worthwhile to do this computation? Should
it be left to the advice receivers?

One interesting point in the MASTNs of Chapter 6 is that the plan representation can
tell the agent what part of the world that it is important to look at. Providing instruc-
tion on what to look at and what to notice is one interesting task that human coaches
and teachers perform. How does this task translate to agent coaching scenarios?
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8.4.3 Advice Languages

The advice language for the coach is one of the most important design decisions in a
coaching system. This choice constrains what the output of the coach can be and has a
large effect on the ability of the coach to produce useful advice.

• A Taxonomy of Advice Languages

Throughout most of this thesis, we used the advice language CLang. While this ad-
vice language has served us well, an understanding of the space of possible advice
languages is important. How language features affect such properties as express-
ibility, ease of implementation, ease of use/generation, and comprehensibility (by
both humans and agents) are all important questions. Creating a formal model for
expressing various properties of an advice language would aid in this task, but how
such a model would be constructed is not clear at this point. Further, this thesis
has focused on advice as recommended actions (or macro-actions). Are there other
meaningful concepts for advice? How would these be encoded in an advice lan-
guage?

• Distributed, Multi-Agent Plans with Options: Negotiation and Coordination

MASTNs as presented in Chapter 6 are an interesting plan representation for dis-
tributed execution. However, while the plans express parallel actions, they do not
adequately express options in the plans. That is, if centralized planning is followed
by distributed execution, it would be useful to allow the plans to contain choices
between qualitatively different paths such that those choices are made at execution
time and not at planning time. However, adding such choices increases the burden
on the executing agents to successfully negotiate and coordinate to choose between
the options. Both representational and algorithmic challenges exist in creating and
using such plans.

• Seeing the Right Things in Multi-Agent Plan Execution

Similarly, the MASTN representation in Chapter 6 implicitly encodes some infor-
mation about the perceptual expectations of the agents. That is, the agents expect to
see the results of the various actions being executed. The plans are tolerant of the
agents having differing beliefs, because of their partial observability, about when an
action was executed. In some domains there may be actions or events which are
not directly or immediately observable by the agents. If the plan representation ex-
plicitly encoded information [e.g., Doyle et al., 1986] about what the agents should
and should not expect to see, then such actions could be handled, whereas MASTNs
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may have trouble. These encodings could potentially be nodes in the graph, allowing
the agents to do the same sort of temporal reasoning as in STNs. However, exactly
specifying how such perceptual expectations could be encoded and reasoned about
is a significant challenge.

8.4.4 Opponent Models

The modeling of and adaptation to opponents is one way that a coach can provide useful
advice to a team. In Chapter 5, we suggested several opponent models for simulated robot
soccer. While these models do capture information about opponents in these complex
environments, many improvements could be made.

• Agent Models for Continuous State and Action Spaces

Many agent modeling techniques are designed for environments with discrete state
and action spaces (see Section 7.3). The models we present in Chapter 5 are spatial
models over continuous environments. While concepts like formations are appli-
cable to other (especially robotic) domains, the models are designed for the robot
soccer domain. Creating spatial agent models which have applicability across do-
mains presents an interesting challenge. How can such models be structured so that
reasoning with them is tractable? Are there spatial patterns which repeat across do-
mains? What probabilistic representations are need to capture the types of agent
behavior generally observed?

• Using a Model of an Opponent in Complex Environments

Even if one has a model of an opponent, planning an appropriate response is a chal-
lenging problem. Section 6.3 presented one planning approach to responding to the
predicted actions of an opponent. Using an opponent model in a standard discrete
turn-taking game is a well known problem [e.g., Carmel and Markovitch, 1996].
However, it is challenging to use an opponent model in an environment like robot
soccer where optimal policies are simply not known and continuous state and ac-
tion spaces must be dealt with. One would like to employ regret minimizing tech-
niques [e.g., Auer et al., 2002] to prevent being exploited while trying to exploit
the opponent’s weaknesses. However, it is not clear how such techniques could be
applied in a domain as complex as robot soccer.
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8.4.5 Coaching in General

While this thesis has helped define the coaching problem and identify the challenging
research problems within, foundational and general coaching work still remains.

• Formal Models of Coaching

A number of models of multi-agent systems have been proposed in recent years [Peshkin
et al., 2000, Boutilier, 1996, Bernstein et al., 2000, Xuan et al., 2001, Pynadath and
Tambe, 2002a,b]. However, none of these explicitly includes a coach agent. The
models of teaching in the machine learning community (see Section 7.2) are all fo-
cused on classification problems, not action selection problems. Defining precisely
the coach-agent interactions should allow for more reusability across domains as
well as possibly suggesting solution algorithms. These models could also be useful
in the design of future advice languages. While we have made some progress on
this front (our preliminary models are described in Appendix D), more remains to
be done.

• The Challenges of Integration in a Coach Agent

One point noted in the introduction is that while many aspects of the coaching prob-
lem have been addressed and all have been tested in fully functioning systems, not
all of the systems are integrated. For instance, the advice adaptation discussed in
Chapter 3 is separate from the environment model learning discussed in Chapter 4.
Often, integrating a system yields unexpected challenges and/or surprising benefits.
I expect the full integration of a coach agent to be no different. As many of the
components discussed throughout the thesis could feed into each other, interesting
interactions will develop and will merit exploration. Further, as coaching is applied
to more domains (such as those suggested in Section 1.4), additional challenges will
surely arise.

8.5 Concluding Remarks

This thesis explores many aspects of the problem faced by an automated coach agent in
generating advice for other agents. Machine learning is applied to learning about the
environment, adversarial agents, and the advice receivers. We present a multi-agent plan
representation to explore how a coach’s advice could be used more effectively. I believe
that as our agents live longer, become more complex, and use richer representations of the
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world, coaching relationships will become both more common and necessary. This thesis
works to make those relationships as productive as possible.
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Appendix A

CLang

This appendix describes CLang, the standard advice language for the simulated robot soc-
cer environment (Section 2.2). Section 2.2.2, which provides a general overview of the
language, should be read first. This language represents the collaborative effort of several
people, including myself, on the RoboCup coach mailing list [Coach Mailing List].

Section A.1 will describe each of the elements of CLang, how they are composed, and
what they mean. Section A.2 will provide several illustrative examples. Lastly, Section A.3
provides the full grammar for the language.

A.1 Description of CLang Elements

CLang has a number of different types of elements, each of which can be instantiated in
different ways. This section discusses all of the elements and how they can be composed.

A.1.1 Points and Regions

Regions are used in both the conditions and actions of the language. Regions can be
specified in a number of ways and any of the following forms can be used anywhere a
region is expected. The names provided for the points and regions are the ones commonly
used by the community. Examples of actual CLang for each will be given.

Regions are based on points. The types of points are shown in Table A.1. Anywhere a
point is required, any of the types can be used. Note that some points refer to the current
state of the world; the agent must evaluate this every time the point is used.
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Name Example
Description

Simple (pt 10 20)
A global (x, y) location on the field

Ball (pt ball)
The global location of the ball

Player (pt our 2)
The global location of a player, either our team or any opponent. Note that the
number can be a variable (more on variables in Section A.1.4).

Arithmetic ((pt ball) + (pt 5 10))
The basic arithmetic operations+, −, ∗, and/ can be performed on points. Each
operation works component-wise.

Table A.1: The types of points in CLang

The list of regions is shown in Table A.2. The regions are various geometric shapes
defined using the points above. Note that all points and regions use global coordinates
rather than player specific coordinates. Therefore, CLang can not express concepts like
“the area currently in the middle of your field of view.” However, through use of player
points, CLang can express regions like “the area between 10m and 20m further upfield
than you.”

A.1.2 Conditions

Given the definition of regions, we can now define the conditions of CLang. Conditions
are constructed from logical connectives (and, or, not) of the atoms shown in Table A.3.
The truth values of the atoms are based on the current state of the world.

One of the goals for choosing this set of conditions is that they are easily operationaliz-
able by the agents. That is, the conditions refer to well-defined features of the world state.
Conditions like “on offense” were rejected by the community because it was felt the in-
terpretations of the agents would vary greatly, making the coach’s task much harder. Note
that the agents do not have a perfect view of the world, so they will naturally sometimes
get the truth value of a condition wrong compared to the ground truth known by the server.
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Name Example
Description

Point (pt ball)
Any point can be used as a region.

Null (null)
The empty region.

Arc(p, ri, ro, θb, θs) (arc (pt ball) 5 20 0 360)
An arc region formed from part of a circle. Given a circle with center pointp and
radiusro, this region is the part of the circle at leastri (the inner radius) fromp and
whose angle to the center (in global coordinates) is betweenθb andθb + θs. The
two anglesθb andθs are known as the begin and span angles respectively.

Triangle(p1, p2, p3) (tri (pt -10 -10) (pt 0 0) (pt -20 20))
A triangular region with verticesp1, p2, andp3.

Rectangle(p1, p2) (rec (pt ball) (pt 50 30))
An axis-aligned rectangle with opposite cornersp1 andp2.

Union (reg (rec (pt 0 0) (pt ball)) (null))
A union of other regions.

Named "MyRegion"
Any region can be assigned a name which can then be used instead of the region
expression.

Table A.2: The types of regions in CLang
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Name Example
Description

True/False (true) (false)
Constant truth values

PlayerPos(s, cmin, cmax, r) (ppos our {2 3 4} 1 2 "MyRegion")
Whether betweencmin andcmax (inclusive) players from player sets are in region
r. Note that variables representing player numbers could be in the player set.

BallPos(r) (bpos "MyRegion")
Whether the ball is in the regionr.

BallOwner(s) (bowner opp {2 4 6 8 10})
Whether a player in the player sets is currently the ball owner. The ball owner is
defined as the last agent to touch the ball.

PlayMode(m) (playm bko)
Whether the current play mode ism. Play modes represent the state of the game,
such as “before kick off”, “goal kick left”, “play on”, etc.

GoalComparison (our_goals >= 2)
An expression comparing the number of goals scored for or against to a given inte-
ger

TimeComparison (600 < time)
An expression about the current time of the game clock compared to a given integer

UNum (unum X {1 2 3})
Used to restrict the possible values of a variable

Named "MyCondition"
Any condition can be assigned a name which can then be used instead of the ex-
pression.

Table A.3: The types of conditions in CLang
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A.1.3 Actions

Similarly, the CLang actions were designed to have relatively clear semantics. CLang
actions are recommended macro-actions for the agents and full list is given in Table A.4.

Two actions deserve special mention. For the “clear” action, there was confusion about
whether this meant to clear “to” or “from” the region. Generally, the interpretation was at
first “to” the region and was later changed to mean “from” the region.

“Home” is the least clearly defined action, but should be used to establish a formation
for the team. Since “formation” means different things to different teams, the agents’
interpretations vary. In general, the agent should be in or near the home region unless it
has something else it is specifically doing.

Note that the exact meaning of a CLang action can change from step to step because
the regions can change based on the state of the world. For example, the pass example in
Table A.4 says to pass to any agent between 10m and 20m from the ball. Which agents
satisfy this criteria will change throughout the game.

Also, the agents are given freedom in the implementation of the macro-actions in two
primary ways. First, some actions have explicit choices, such as “marksomeplayer in
this set” or “position yourself atsomepoint in this region.” Secondly, the translation from
these macro-actions to the lowest level actions is not fully specified. For example, neither
how fast the ball should go for a pass nor the speed of dribbling is specified. This freedom
allows for considerable variability in the implementations by the coachable agents.

A.1.4 Miscellany

One more component must be added to conditions and actions in order to make a rule. A
directive contains: the list of actions, whether the actions are advised to be done ornot be
done, and which players the actions apply to. A rule is a condition combined with either a
list of directives or a list of rules. Rules can be defined, redefined, turned on and off, and
deleted. At every time step, the agents examine every currently turned on rule to see if the
conditions match. If a turned-on rule (whose conditions match) refers to another rule, the
latter rule is then checked (whether it is turned on or off).

Any region, condition, action, directive, or rule can be given a name which can be
used in any place where one of those elements is expected. Because of a simple oversight,
points can not be given names but this has not shown to be a major limitation.

As mentioned several times, CLang supports variables that represent player numbers.



160 APPENDIX A. CLANG

Name Example
Description

Position(r) (pos (pt -10 10))
Position self in regionr

Mark(s) (mark {7 8 9 10})
Mark one of the players in player sets. Marking is a standard soccer term meaning
to play defense against a player.

MarkLine(s) (markl {5 6 7})
Stay between the ball and one of the players ins

MarkLine(r) (markl (rec (pt 0 0) (pt 20 20)))
Stay between the ball and the regionr

Pass(r) (pass (arc (pt ball) 10 20 0 360))
Pass to a player in regionr

Pass(s) (pass {0})
Pass to a player in player sets

Dribble(r) (dribble "SomeRegion")
Dribble the ball to a point in regionr

Clear(r) (clear "SomeOtherRegion")
Clear the ball to/from regionr

Shoot (shoot)
Shoot the ball

Hold (hold)
Try to hold on to the ball, keeping it from opponents

Intercept (intercept)
Try to get the ball

Tackle(s) (tackle {6 9})
Tackle (a basic soccer action) any opponent in player sets who has the ball

OffsidesLine(r) (oline "MyName")
Move the offsides line (i.e. defensive position) up to regionr

HetType(t) (htype 3)
Used for modeling rules to say that players are of heterogeneous typet. This action
will not be used in this thesis.

Home(r) (home (rec (pt -30 -30) (pt -10 -10)))
Set the home region tor. See text for explanation.

Named "MyAction"
Any action can be assigned a name which can then be used instead of the expression

Table A.4: The types of actions in CLang
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Variables are one of the least understood and least well implemented parts of CLang, so
this discussion represents my understanding of variables. The known limitations of current
implementations will also be discussed.

Overall, the meaning of a rule with variables is that at each time step, for each assign-
ment to all relevant variables such that the condition is true, the directive created by that
assignment applies. Because of the flexibility allowed in the language through multiple
uses of a variable in a condition and the use of variables in the points of regions, there is
probably in general no more efficient way to evaluate an expression with variables than to
try and match the condition for every possible assignment. Note that variables only bind
to numbers, not to a complete player identification (a team and player number).

It is unknown exactly how complex a variable statement can be and still be matched
correctly by the current coachable agents. However, expressions with one variable used in
one location (that isnot part of a region specification) are in general matched correctly. I
believe that variables are not well integrated in CLang and hope that the community will
work to revise the language in the future. Therefore, variables are used very sparingly
throughout this thesis.

It was originally the intention that Clang could be used for both providing advice to
the players and providing team and opponent modeling information. The same structure
that means “If the world matches condition A, then do B” could be used to say “When
the world looks like A, you (or your opponent) generally do B.” However, at the time of
writing, no coachable agent used any information provided through a modeling rule1, so
only advice directives are meaningful to agents.

A.2 Examples

In order to further clarify the type of concepts expressible by CLang, we provide a number
of examples, illustrated and explained in detail. All of these examples are pulled from real
utterances of our coach (though some names have been changed). In some cases the rules
have been simplified slightly for illustration purposes.

In all cases, we illustrate the definition of a rule. In order for the players to actually
use the rule, it would have to be turned on. If a rule namedMary was defined, it could be
turned on like this:

1Actually, some agents can understand an “htype” action (see Table A.4), but this action is only for
modeling rules and is qualitatively different from the other actions.
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(rule (on Mary))

A.2.1 Example: Formation Based Marking

First, we consider a rule which uses two named CLang components in its definition. This
example comes from the formation based marking described in Section 5.2.1

(definec "Andrade" (not (ppos our {1 3 4 5 6 7 8 9 10 11}
1 11 (arc (pt opp 11) 0 5 0 360))))

(defined "Baia" (do our {2} (mark {11})))
(definerule Deco direc

((and (playm play_on) "Andrade") "Baia"))

The first two lines define a condition (definec is the keyword introducing a condition
definition) named “Andrade”. Consider first the region defined beginning with thearc
keyword. This region is illustrated in Figure A.1. Note that the center of the circle is
wherever opponent number 11 is. The region includes all of the area between 0 and 5
meters from that player. The rest of the condition says, “if it is not the case that at least
one player on our team (except player 2) is in that region.” In other words, this condition
tests whether “there are no teammates (except player 2) within 5 meters of opponent 11.”

The next line defines a directive (introduced by the keyworddefined ) named “Baia.”
It advises player 2 on our team to mark player 11 on the opponent team. Finally, the rule
named “Deco” is defined in the last line. It combines the named condition “Andrade” with
the condition that the play mode isplay_on (which is the normal play mode) and then
uses the named directive “Baia.” Overall, the rule says for player 2 to mark opponent 11,
as long as no other player on the team is already marking that opponent.

A.2.2 Example: Setplays

Next, we will show the coach recommending positions for our team when the opponent
has a goal kick.

(definerule Figo direc
((playm gk_opp)

(do our {4} (pos (pt 36.5 -21.16)))
(do our {10} (pos (pt 35 8)))
(do our {11} (pos (pt 35 -9.16)))))
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Figure A.1: Illustration of the region on the field used by the condition “Andrade.” Note
that the center of the circular region is not a fixed point, but rather the current location of
opponent 11.

The rule “Figo” has the condition that the play mode is the opponent’s goal kick. The
rule then advises the players to position themselves in the regions illustrated in Figure A.2.
Note that each of the regions is a single point.

As described in Chapter 6, the coach also makes plans for stopped ball situations when
we control the ball. The first rule output by this process gives positions for some players
as in the last example.

(definerule Pauleta direc
((or (playm bko) (playm ko_our) (playm ag_opp))

(do our {4} (pos (pt 0 0)))
(do our {9} (pos (pt -5 7)))
(do our {10} (pos (pt -1 30.999)))))

These positions are illustrated in Figure A.3. The only additional complication in the
rule is that several play mode conditions are combined with anor . The three play modes
are “before kick off,” “our kick off,” and “after goal scored on opponent.” These three
play modes are used in this example because there is some confusion among the coachable
agents as to exactly what these play modes mean.
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Figure A.2: Illustration of the positions advised by the “Figo” rule. The numbers refer to
which player is supposed to stand at the point (represented as a small circle).

In order to actually move the ball for our kick off, the coach advises one agent to pass
the ball.

(definerule Ronaldo direc
((time > 318) (do our {4} (pass {9}))))

The condition in the “Ronaldo” rule is that the time is larger than 318. Once that is
true, player 4 is advised to pass to player 9 as instructed by the arrow in Figure A.3. Note
that the real plans described in Chapter 6 would have more rules for the other steps in the
plan.

A.2.3 Example: MDP Tree

We now move on to our final and most complicated example. This example comes from
advice generated from a learned MDP as described in Chapter 4. The use of named regions
and conditions will be combined with the use of nested rules.

First, a few regions and conditions are defined. The names will look unusual, but they
encode somewhat how they will be used in the rest of the rules.

(definer "BG100658" (rec (pt 31.8 23) (pt 42.4 34.5)))
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Figure A.3: Illustration of the “Pauleta” and “Ronaldo” rules. The “Pauleta” rule advises
the positions shown by the circles for the given numbers. The “Ronaldo” rule specifies the
pass from player 4 to player 9 shown by the arrow.

The region “BG100658” is depicted in Figure A.4. That region (and other similarly
named ones) will be used in conditions on the position of the ball below.

(definer "PR4" (arc (pt ball) 1.5 15.05 15.1 52.52))
(definec "PC4_0" (and (ppos our {0} 0 0 "PR4")

(ppos opp {0} 0 0 "PR4")))

The region defined by “PR4” is shown in Figure A.5. This region (which has the ball
at the center of the arc) is used in defining condition “PC4_0,” which says that there are no
teammates or opponents in region “PR4.” Remember that the notation{0} for a player
set meansall players on the team.

We can now show some of the actual rules which use these regions. As mentioned
previously, we will be using nested rules. We will define the innermost rule first.

(definerule A0000158 direc
((true)

(do our {0} (pass (rec (pt 36 -20.16) (pt 52.5 20.16))))
(do our {0} (hold))))
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Figure A.4: Regions used in the nested rule example. One is the “BG100658” named
region and the other is used in the rule “A0000158.”

This rule named “A0000158” has just the conditiontrue because the meaningful condi-
tions will occur in the enclosing rules. The rule then recommends two actions to the entire
team. The first is to pass to a player in the region illustrated in Figure A.4. The second
recommendation is to hold on to the ball, keeping it away from opponents.

Now that this rule is defined, how is it used? Here is the rule which includes “A0000158.”

(definerule A00001 direc
((true)

((bpos "BG100601") A0000101)
((bpos "BG100602") A0000102)
...
((bpos "BG100658") A0000158)))

The dots indicate that we have removed many similar statements. Rule “A00001” uses
a form where every nested rule has its own condition. That is, overall the rule has the
condition true , but in order for the agent to start trying to match the inner rule, the
condition specified for that rule must match. In this case, all the conditions are on the
position of the ball. If the ball is in region “BG100658” (shown in Figure A.4), then the
rule “A0000158” will be checked to see if it matches.

In the same fashion, this rule can be nested further in other rules.
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Figure A.5: The PR4 region used in the nested rule example. Note that the center of this
arc region is the position of the ball.

(definerule A0000 direc
((true) ("PC4_0" A00000) ("PC4_1" A00001)))

(definerule A000 direc
((true) ("PC3_0" A0000) ("PC3_1" A0001)))

(definerule A00 direc
((true) ("PC2_0" A000) ("PC2_1" A001)))

(definerule A0 direc
((true) ("PC1_0" A00) ("PC1_1" A01)))

(definerule A direc
((true) ("PC0_0" A0) ("PC0_1" A1)))

We defined one condition “PC4_0” above and the other conditions have a similar struc-
ture. At the end of all of this, just the rule “A” would be turned on with:

(rule (on A))

Only the rules which are on are matched at the top level.

These examples naturally do not exhaustively cover the space of what can be expressed
in CLang or even the space of what is expressed in this thesis. These examples do illustrate
what CLang can express and how it is used.
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A.3 CLang Grammar

What follows is the full grammar for CLang. Sections 2.2.2 and A.1 and the Soccer Server
Manual [Chen et al., 2001] provide informal descriptions of the semantics. This text came
from the Soccer Server Manual [Chen et al., 2001].

<MESSAGE> : <FREEFORM_MESS> | <DEFINE_MESS>
| <RULE_MESS> | <DEL_MESS>

<RULE_MESS> : (rule <ACTIVATION_LIST>)

<DEL_MESS> : (delete <ID_LIST>)

<DEFINE_MESS> : (define <DEFINE_TOKEN_LIST>)

<FREEFORM_MESS> : (freeform <CLANG_STR>)

<DEFINE_TOKEN_LIST> : <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>
| <DEFINE_TOKEN>

<DEFINE_TOKEN> : (definec <CLANG_STR> <CONDITION>)
| (defined <CLANG_STR> <DIRECTIVE>)
| (definer <CLANG_STR> <REGION>)
| (definea <CLANG_STR> <ACTION>)
| (definerule <DEFINE_RULE>)

<DEFINE_RULE> : <CLANG_VAR> model <RULE>
| <CLANG_VAR> direc <RULE>

<RULE> : (<CONDITION> <DIRECTIVE_LIST>)
| (<CONDITION> <RULE_LIST>)
| <ID_LIST>

<ACTIVATION_LIST> : <ACTIVATION_LIST> <ACTIVATION_ELEMENT>
| <ACTIVATION_ELEMENT>

<ACTIVATION_ELEMENT> : (on|off <ID_LIST>)

<ACTION> : (pos <REGION>)
| (home <REGION>)
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| (mark <UNUM_SET>)
| (markl <UNUM_SET>)
| (markl <REGION>)
| (oline <REGION>)
| (htype <INTEGER>)
| <CLANG_STR>
| (pass <REGION>)
| (pass <UNUM_SET>)
| (dribble <REGION>)
| (clear <REGION>)
| (shoot)
| (hold)
| (intercept)
| (tackle <UNUM_SET>)

<CONDITION> : (true)
| (false)
| (ppos <TEAM> <UNUM_SET>

<INTEGER> <INTEGER> <REGION>)
| (bpos <REGION>)
| (bowner <TEAM> <UNUM_SET>)
| (playm <PLAY_MODE>)
| (and <CONDITION_LIST>)
| (or <CONDITION_LIST>)
| (not <CONDITION>)
| <CLANG_STR>
| (<COND_COMP>)
| (unum <CLANG_VAR> <UNUM_SET>)
| (unum <CLANG_STR> <UNUM_SET>)

<COND_COMP> : <TIME_COMP>
| <OPP_GOAL_COMP>
| <OUR_GOAL_COMP>
| <GOAL_DIFF_COMP>

<TIME_COMP> : time <COMP> <INTEGER>
| <INTEGER> <COMP> time

<OPP_GOAL_COMP> : opp_goals <COMP> <INTEGER>
| <INTEGER> <COMP> opp_goals
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<OUR_GOAL_COMP> : our_goals <COMP> <INTEGER>
| <INTEGER> <COMP> our_goals

<GOAL_DIFF_COMP> : goal_diff <COMP> <INTEGER>
| <INTEGER> <COMP> goal_diff

<COMP> : < | <= | == | != | >= | >

<PLAY_MODE> : bko | time_over | play_on | ko_our | ko_opp
| ki_our | ki_opp | fk_our | fk_opp
| ck_our | ck_opp | gk_opp | gk_our
| gc_our | gc_opp | ag_opp | ag_our

<DIRECTIVE> : (do|dont <TEAM> <UNUM_SET> <ACTION_LIST>)
| <CLANG_STR>

<REGION> : (null)
| (arc <POINT> <REAL> <REAL> <REAL> <REAL>)
| (reg <REGION_LIST>)
| <CLANG_STR>
| <POINT>
| (tri <POINT> <POINT> <POINT>)
| (rec <POINT> <POINT>)

<POINT> : (pt <REAL> <REAL>)
| (pt ball)
| (pt <TEAM> <INTEGER>)
| (pt <TEAM> <CLANG_VAR>)
| (pt <TEAM> <CLANG_STR>)
| (<POINT_ARITH>)

<POINT_ARITH> : <POINT_ARITH> <OP> <POINT_ARITH>
| <POINT>

<OP> : + | - | * | /

<REGION_LIST> : <REGION_LIST> <REGION>
| <REGION>

<UNUM_SET> : { <UNUM_LIST> }
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<UNUM_LIST> : <UNUM>
| <UNUM_LIST> <UNUM>

<UNUM> : <INTEGER> | <CLANG_VAR> | <CLANG_STR>

<ACTION_LIST> : <ACTION_LIST> <ACTION>
| <ACTION>

<DIRECTIVE_LIST> : <DIRECTIVE_LIST> <DIRECTIVE>
| <DIRECTIVE>

<CONDITION_LIST> : <CONDITION_LIST> <CONDITION>
| <CONDITION>

<RULE_LIST> : <RULE_LIST> <RULE>
| <RULE>

<ID_LIST> : <CLANG_VAR>
| (<ID_LIST2>)
| all

<ID_LIST2> : <ID_LIST2> <CLANG_VAR>
| <CLANG_VAR>

<CLANG_STR> : "[0-9A-Za-z().+-*/?<>_ ]+"

<CLANG_VAR> : [abe-oqrt-zA-Z_]+[a-zA-Z0-9_]*

<TEAM> : our | opp
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Appendix B

Transition Classification for MDP
Learning

Learning an MDP as presented in Chapter 4 requires that abstract action templates be pro-
vided. The templates require a specification of the primary and secondary state transitions
for each action. This appendix gives the details of the construction of the action class tem-
plates for the soccer and RCSSMaze environments. The construction follows the general
scheme discussed in Section 4.3.3.

B.1 Simulated Robot Soccer

First, we have the list of features of pairs of states. In the names and descriptions below,
we use past tense to refer to the first state and present tense to refer to the second state.
Most features examine just one of the state factors (see Section 4.3.2).

Feature Factor(s) Description
IsMyGoal Goal In the our goal scored state
IsTheirGoal Goal In the their goal scored state
WasMyGoal Goal Were in the our goal scored state
WasTheirGoal Goal Were in the their goal scored state
WeHadBall Ball Owner We were the ball owner
TheyHadBall Ball Owner Their were the ball owner
WasFightBall Ball Owner No one/both teams were ball owners

Continued on next page
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Feature Factor(s) Description
WeHaveBall Ball Owner We are the ball owner
TheyHaveBall Ball Owner They are the ball owner
IsFightBall Ball Owner No one/both teams are ball owners
WeKeptBall Ball Owner We were the ball owner and still are
TheyKeptBall Ball Owner They were the ball owner and still are
FightBall Ball Owner No one/both teams owner the ball in both states
MyFreeKickTran Dead Ball Was not our free kick and now it is
TheirFreeKickTran Dead Ball Was not their free kick and now it is
WasMyFreeKick Dead Ball Was our free kick
IsMyFreeKick Dead Ball Is our free kick
WasTheirFreeKick Dead Ball Was their free kick
IsTheirFreeKick Dead Ball Is their free kick
WasNotFreeKick Dead Ball Was not a free kick state
IsNotFreeKick Dead Ball Is not a free kick state
BallWasInMyPen Ball Grid The ball was in our penalty area
BallIsInMyPen Ball Grid The ball is in our penalty area
BallWasInTheirPen Ball Grid The ball was in their penalty area
BallIsInTheirPen Ball Grid The ball is in their penalty area
BallWasInMyHalf Ball Grid The ball was in my (defensive) half of the field
BallIsInMyHalf Ball Grid The ball is in my (defensive) half of the field
BallWasInTheirHalf Ball Grid The ball was in their half of the field
BallIsInTheirHalf Ball Grid The ball is in their half of the field
BallWasOnTopSide Ball Grid Ball was on the top of the field (negativey)
BallIsOnTopSide Ball Grid Ball is on the top of the field (negativey)
BallWasOnBottomSide Ball Grid Ball was on the bottom of the field (positivey)
BallIsOnBottomSide Ball Grid Ball is on the bottom of the field (positivey)
BallWasAtMyPenCorner Ball Grid Ball was at either corner of my penalty area. This

is relevant because infractions in the penalty area
result in the ball being moved here.

BallIsAtMyPenCorner Ball Grid (see BallWasAtMyPenCorner, for current state)
BallWasAtTheirPenCorner Ball Grid Ball was at either corner of their penalty area.

This is relevant because infractions in the penalty
area result in the ball being moved here.

Continued on next page
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Feature Factor(s) Description
BallIsAtTheirPenCorner Ball Grid (see BallWasAtTheirPenCorner, for current state)
BallWasInMyTopCorner Ball Grid Ball was in the area directly above (negativey)

my penalty area
BallIsInMyTopCorner Ball Grid Ball is in the area directly above (negativey) my

penalty area
BallWasInMyBottomCorner Ball Grid Ball was in the area directly below (positivey) my

penalty area
BallIsInMyBottomCorner Ball Grid Ball is in the area directly below (positivey) my

penalty area
BallWasInTheirTopCorner Ball Grid Ball was in the area directly above (negativey)

their penalty area
BallIsInTheirTopCorner Ball Grid Ball is in the area directly above (negativey) their

penalty area
BallWasInTheirBottomCorner Ball Grid Ball was in the area directly below (positivey)

their penalty area
BallIsInTheirBottomCorner Ball Grid Ball is in the area directly below (positivey) their

penalty area
BallMoveOffensive Ball Grid The ball moved in thex direction towards towards

my offensive side
BallMoveDefensive Ball Grid The ball moved in thex direction towards towards

my defensive side
BallMoveDirNeutral Ball Grid The ball’sx position did not change
BallMoveNone Ball Grid The ball is in the same place
BallMoveNear Ball Grid The ball moved to one of the 8 adjacent grid

squares
BallMoveMid Ball Grid The ball moved to one of the 18 grid squares

which are exactly 2 steps away in either thex or y
dimension

BallMoveFar Ball Grid The ball moved to one of the 24 grid squares
which are exactly 3 steps away in either thex or y
dimension

BallMoveVeryFar Ball Grid All ball movements not covered by
BallMoveNone, BallMoveNear, BallMoveMid,
and BallMoveFar

Continued on next page
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Feature Factor(s) Description
SelfTran all The states are the same
WeWereNotCloseToBall Player Oc-

cupancy
Only meaningful for BallArc. No teammates were
in the 2 regions closest to the ball

WeAreNotCloseToBall Player Oc-
cupancy

Only meaningful for BallArc. No teammates are
in the 2 regions closest to the ball

TheyWereNotCloseToBall Player Oc-
cupancy

Only meaningful for BallArc. No opponents were
in the 2 regions closest to the ball

TheyAreNotCloseToBall Player Oc-
cupancy

Only meaningful for BallArc. No opponents are
in the 2 regions closest to the ball

Based on these state features, transition classes can be defined. A transition class is
defined by a DNF formula on state features.! is used to negate literals. The expression
“FeatureA FeatureB OR !FeatureC FeatureD” means that this class matches if FeatureA
and FeatureB are true or if FeatureC is false and FeatureD is true. Remember that this list
is ordered; every transition is assigned to the first matching class.

Class Matching Expression
MyGoal IsMyGoal WeHadBall
TheirGoal IsTheirGoal TheyHadBall
MyFightGoal IsMyGoal WasFightBall
TheirFightGoal IsTheirGoal WasFightBall
MyOwnGoal IsMyGoal TheyHadBall
TheirOwnGoal IsTheirGoal WeHadBall
GoalToKickOff WasMyGoal IsTheirFreeKick OR WasTheirGoal

IsMyFreeKick
MyKickOutSide WeHadBall TheirFreeKickTran BallIsOnTopSide OR

WeHadBall TheirFreeKickTran BallIsOnBottomSide OR
WasFightBall TheirFreeKickTran BallIsOnTopSide OR
WasFightBall TheirFreeKickTran BallIsOnBottomSide

TheirKickOutSide TheyHadBall MyFreeKickTran BallIsOnTopSide OR
TheyHadBall MyFreeKickTran BallIsOnBottomSide OR
WasFightBall MyFreeKickTran BallIsOnTopSide OR
WasFightBall MyFreeKickTran BallIsOnBottomSide

MyShotCaughtOrToGK WeHadBall BallIsInTheirPen TheirFreeKickTran
TheirShotCaughtOrToGK TheyHadBall BallIsInMyPen MyFreeKickTran
MyFightShotCaughtOrToGK WasFightBall BallIsInTheirPen TheirFreeKickTran
TheirFightShotCaughtOrToGK WasFightBall BallIsInMyPen MyFreeKickTran

Continued on next page
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Class Matching Expression
MyOffOrFreeKickFault WeHadBall BallIsInTheirHalf TheirFreeKickTran OR

WasFightBall BallIsInTheirHalf TheirFreeKickTran
TheirOffOrFreeKickFault TheyHadBall BallIsInMyHalf MyFreeKickTran OR

WasFightBall BallIsInMyHalf MyFreeKickTran
MyIllegalBackPassToGoalie WeHadBall BallWasInMyHalf TheirFreeKickTran

BallIsAtMyPenCorner
TheirIllegalBackPassToGoalie TheyHadBall BallWasInTheirHalf MyFreeKickTran

BallIsAtTheirPenCorner
MyFightIllegalBackPassToGoalie WasFightBall BallWasInMyHalf TheirFreeKickTran

BallIsAtMyPenCorner
TheirFightIllegalBackPassToGoalie WasFightBall BallWasInTheirHalf MyFreeKickTran

BallIsAtTheirPenCorner
MyApparentIllegalBackPassToGoalie

TheyHadBall BallWasInMyHalf TheirFreeKickTran
BallIsAtMyPenCorner

TheirApparentIllegalBackPassToGoalie
WeHadBall BallWasInTheirHalf MyFreeKickTran
BallIsAtTheirPenCorner

MyLegalBackPassToGoalie WeHadBall BallWasInMyHalf MyFreeKickTran
BallIsInMyPen

TheirLegalBackPassToGoalie TheyHadBall BallWasInTheirHalf TheirFreeKickTran
BallIsInTheirPen

MyFreeKickFault TheirFreeKickTran BallIsInMyHalf WeHadBall
TheirFreeKickFault MyFreeKickTran BallIsInTheirHalf TheyHadBall
TheirApparentKickOutSide MyFreeKickTran WeHadBall BallIsOnTopSide OR

MyFreeKickTran WeHadBall BallIsOnBottomSide
MyApparentKickOutSide TheirFreeKickTran TheyHadBall BallIsOnTopSide OR

TheirFreeKickTran TheyHadBall BallIsOnBottomSide
MyApparentOffOrFreeKickFault TheyHadBall TheirFreeKickTran
TheirApparentOffOrFreeKickFault WeHadBall MyFreeKickTran
MyApparentFightToOffOrFreeKickFault

WasFightBall TheirFreeKickTran
TheirApparentFightToOffOrFreeKickFault

WasFightBall MyFreeKickTran
MyGoalieMove WasMyFreeKick IsMyFreeKick BallWasInMyPen

BallIsInMyPen
Continued on next page
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Class Matching Expression
TheirGoalieMove WasTheirFreeKick IsTheirFreeKick BallWasInTheirPen

BallIsInTheirPen
MyUnusualFreeKickToFreeKick WasMyFreeKick IsMyFreeKick !BallMoveNone
TheirUnusualFreeKickToFreeKick WasTheirFreeKick IsTheirFreeKick !BallMoveNone
MyFailedKickIn WasMyFreeKick IsTheirFreeKick BallWasOnTopSide

BallIsOnTopSide OR WasMyFreeKick IsTheirFreeKick
BallWasOnBottomSide BallIsOnBottomSide

TheirFailedKickIn WasTheirFreeKick IsMyFreeKick BallWasOnTopSide
BallIsOnTopSide OR WasTheirFreeKick IsMyFreeKick
BallWasOnBottomSide BallIsOnBottomSide

MyFreeKickToGoalieCatchorGK WasMyFreeKick BallWasInTheirHalf IsTheirFreeKick
BallIsInTheirPen

TheiFreeKickToGoalieCatchorGK WasTheirFreeKick BallWasInMyHalf IsMyFreeKick
BallIsInMyPen

MyFreeKickToOut WasMyFreeKick IsTheirFreeKick BallIsOnTopSide OR
WasMyFreeKick IsTheirFreeKick BallIsOnBottomSide

TheirFreeKickToOut WasTheirFreeKick IsMyFreeKick BallIsOnTopSide OR
WasTheirFreeKick IsMyFreeKick BallIsOnBottomSide

MyFreeKickToOff WasMyFreeKick IsTheirFreeKick BallIsInTheirHalf
TheirFreeKickToOff WasTheirFreeKick IsMyFreeKick BallIsInMyHalf
MyGoalKickFault WasMyFreeKick BallWasInMyPen IsTheirFreeKick

BallIsAtMyPenCorner
TheirGoalKickFault WasTheirFreeKick BallWasInTheirPen IsMyFreeKick

BallIsAtTheirPenCorner
MyFreeKickToBackPass WasMyFreeKick BallWasInMyHalf IsTheirFreeKick

BallIsAtMyPenCorner
TheirFreeKickToBackPass WasTheirFreeKick BallIsInTheirHalf IsMyFreeKick

BallIsAtTheirPenCorner
MyFreeKickStart WasMyFreeKick IsNotFreeKick
TheirFreeKickStart WasTheirFreeKick IsNotFreeKick
MyCross !TheyHadBall BallWasInTheirTopCorner

BallIsInTheirPen !TheyHaveBall !BallMoveNone OR
!TheyHadBall BallWasInTheirBottomCorner
BallIsInTheirPen !TheyHaveBall !BallMoveNone

Continued on next page
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Class Matching Expression
MyFailedCross WeHadBall BallWasInTheirTopCorner BallIsInTheirPen

TheyHaveBall !BallMoveNone OR WeHadBall
BallWasInTheirBottomCorner BallIsInTheirPen
TheyHaveBall !BallMoveNone

MyPossFailedCross WasFightBall BallWasInTheirTopCorner
BallIsInTheirPen TheyHaveBall !BallMoveNone OR
WasFightBall BallWasInTheirBottomCorner
BallIsInTheirPen TheyHaveBall !BallMoveNone

TheirCross !WeHadBall BallWasInMyTopCorner BallIsInMyPen
!WeHaveBall !BallMoveNone OR !WeHadBall
BallWasInMyBottomCorner BallIsInMyPen
!WeHaveBall !BallMoveNone

TheirFailedCross TheyHadBall BallWasInMyTopCorner BallIsInMyPen
WeHaveBall !BallMoveNone OR TheyHadBall
BallWasInMyBottomCorner BallIsInMyPen WeHaveBall
!BallMoveNone

TheirPossFailedCross WasFightBall BallWasInMyTopCorner BallIsInMyPen
WeHaveBall !BallMoveNone OR WasFightBall
BallWasInMyBottomCorner BallIsInMyPen WeHaveBall
!BallMoveNone

MyVeryLongPassOrClear !TheyHadBall BallMoveVeryFar BallMoveOffensive
WeHaveBall

TheirVeryLongPassOrClear !WeHadBall BallMoveVeryFar BallMoveDefensive
TheyHaveBall

MyVeryLongSidePass !TheyHadBall BallMoveVeryFar BallMoveDirNeutral
WeHaveBall

TheirVeryLongSidePass !WeHadBall BallMoveVeryFar BallMoveDirNeutral
TheyHaveBall

MyFailedVeryLongPassOrClear !TheyHadBall BallMoveVeryFar BallMoveOffensive
!WeHaveBall

TheirFailedVeryLongPassOrClear !WeHadBall BallMoveVeryFar BallMoveDefensive
!TheyHaveBall

MyFailedVeryLongSidePass !TheyHadBall BallMoveVeryFar BallMoveDirNeutral
!WeHaveBall

TheirFailedVeryLongSidePass !WeHadBall BallMoveVeryFar BallMoveDirNeutral
!TheyHaveBall

Continued on next page
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Class Matching Expression
MyVeryLongBackPass !TheyHadBall BallMoveVeryFar WeHaveBall
TheirVeryLongBackPass !WeHadBall BallMoveVeryFar TheyHaveBall
MyFailedVeryLongBackPass !TheyHadBall BallMoveVeryFar !WeHaveBall
TheirFailedVeryLongBackPass !WeHadBall BallMoveVeryFar !TheyHaveBall
MyLongPassOrClear !TheyHadBall BallMoveFar BallMoveOffensive

WeHaveBall
TheirLongPassOrClear !WeHadBall BallMoveFar BallMoveDefensive

TheyHaveBall
MyLongSidePass !TheyHadBall BallMoveFar BallMoveDirNeutral

WeHaveBall
TheirLongSidePass !WeHadBall BallMoveFar BallMoveDirNeutral

TheyHaveBall
MyFailedLongPassOrClear !TheyHadBall BallMoveFar BallMoveOffensive

!WeHaveBall
TheirFailedLongPassOrClear !WeHadBall BallMoveFar BallMoveDefensive

!TheyHaveBall
MyFailedLongSidePass !TheyHadBall BallMoveFar BallMoveDirNeutral

!WeHaveBall
TheirFailedLongSidePass !WeHadBall BallMoveFar BallMoveDirNeutral

!TheyHaveBall
MyLongBackPass !TheyHadBall BallMoveFar WeHaveBall
TheirLongBackPass !WeHadBall BallMoveFar TheyHaveBall
MyFailedLongBackPass !TheyHadBall BallMoveFar !WeHaveBall
TheirFailedLongBackPass !WeHadBall BallMoveFar !TheyHaveBall
MyMidPassOrClear !TheyHadBall BallMoveMid BallMoveOffensive

WeHaveBall
MyFailedMidPassOrClear !TheyHadBall BallMoveMid BallMoveOffensive

!WeHaveBall
MyMidSidePassOrClear !TheyHadBall BallMoveMid BallMoveDirNeutral

WeHaveBall
MyFailedMidSidePassOrClear !TheyHadBall BallMoveMid BallMoveDirNeutral

!WeHaveBall
MyMidBackPass !TheyHadBall BallMoveMid WeHaveBall
MyFailedMidBackPass !TheyHadBall BallMoveMid !WeHaveBall
TheirMidPassOrClear !WeHadBall BallMoveMid BallMoveDefensive

TheyHaveBall
Continued on next page
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Class Matching Expression
TheirFailedMidPassOrClear !WeHadBall BallMoveMid BallMoveDefensive

!TheyHaveBall
TheirMidSidePassOrClear !WeHadBall BallMoveMid BallMoveDirNeutral

TheyHaveBall
TheirFailedMidSidePassOrClear !WeHadBall BallMoveMid BallMoveDirNeutral

!TheyHaveBall
TheirMidBackPass !WeHadBall BallMoveMid TheyHaveBall
TheirFailedMidBackPass !WeHadBall BallMoveMid !TheyHaveBall
MyShortPassOrDribble !TheyHadBall BallMoveNear WeHaveBall
MyFailedShortPassOrDribble !TheyHadBall BallMoveNear !WeHaveBall
TheirShortPassOrDribble !WeHadBall BallMoveNear TheyHaveBall
TheirFailedShortPassOrDribble !WeHadBall BallMoveNear !TheyHaveBall
MyLostBall WeHadBall BallMoveNone !TheyWereNotCloseToBall

TheyHaveBall
TheirLostBall TheyHadBall BallMoveNone !WeWereNotCloseToBall

WeHaveBall
MyLostBallToFight WeHadBall BallMoveNone !TheyWereNotCloseToBall

IsFightBall
TheirLostBallToFight TheyHadBall BallMoveNone !WeWereNotCloseToBall

IsFightBall
MyWonFight WasFightBall BallMoveNone WeHaveBall
TheirWonFight WasFightBall BallMoveNone TheyHaveBall
ContinueFightSelfTran WasFightBall SelfTran
ContinueFight WasFightBall BallMoveNone IsFightBall
MyFailedClosePass WeHadBall BallMoveNone TheyWereNotCloseToBall

TheyHaveBall
TheirFailedClosePass TheyHadBall BallMoveNone WeWereNotCloseToBall

WeHaveBall
MyPassToFightClose WeHadBall BallMoveNone TheyWereNotCloseToBall

IsFightBall
TheirPassToFightClose TheyHadBall BallMoveNone WeWereNotCloseToBall

IsFightBall
MyHoldBallSelfTran WeHadBall SelfTran
TheirHoldBallSelfTran TheyHadBall SelfTran
MyHoldBall WeHadBall BallMoveNone WeHaveBall

Continued on next page
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Class Matching Expression
TheirHoldBall TheyHadBall BallMoveNone TheyHaveBall

Finally, we can define the classes that make up the primary and secondary transitions.

Action Primary Transition Classes Secondary Transition Classes
HoldBall MyHoldBall MyHoldBallSelfTran MyWonFight

MyWonFightSelfTran ContinueFightSelfTran
ContinueFight MyLostBall MyLostBallToFight

PassTo MyVeryLongPassOrClear
MyVeryLongSidePass MyVeryLongBackPass
MyLongPassOrClear MyLongSidePass
MyLongBackPass MyMidPassOrClear
MyMidSidePassOrClear MyMidBackPass
MyShortPassOrDribble
MyIllegalBackPassToGoalie
MyFightIllegalBackPassToGoalie

MyOffOrFreeKickFault
MyFailedVeryLongPassOrClear
MyFailedVeryLongSidePass
MyFailedVeryLongBackPass
MyFailedLongPassOrClear
MyFailedLongSidePass
MyFailedLongBackPass
MyFailedMidPassOrClear
MyFailedMidSidePassOrClear
MyFailedMidBackPass
MyFailedShortPassOrDribble
MyLostBall
MyFailedClosePass
MyPassToFightClose

DribbleTo MyShortPassOrDribble MyFailedShortPassOrDribble
MyLostBall
MyLostBallToFight

Clear MyKickOutSide MyVeryLongPassOrClear
MyVeryLongSidePass MyLongPassOrClear
MyLongSidePass MyMidPassOrClear
MyMidSidePassOrClear
MyFailedVeryLongPassOrClear
MyFailedVeryLongSidePass
MyFailedLongPassOrClear
MyFailedLongSidePass
MyFailedMidPassOrClear
MyFailedMidSidePassOrClear MyLostBall
MyFailedClosePass MyPassToFightClose

Continued on next page
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Action Primary Transition Classes Secondary Transition Classes
Shoot MyGoal MyFightGoal MyShotCaughtOrToGK

MyFightShotCaughtOrToGK
MyOffOrFreeKickFault MyLostBall

Cross MyCross MyFailedCross MyPossFailedCross
TheirAct (all beginning with “Their” except those in Null)
Null MyOwnGoal MyGoalieMove MyFreeKickStart

MyUnusualFreeKickToFreeKick
MyLegalBackPassToGoalie MyFreeKickFault
MyApparentKickOutSide
MyApparentOffOrFreeKickFault
MyApparentFightToOffOrFreeKickFault
MyApparentIllegalBackPassToGoalie
TheirApparentIllegalBackPassToGoalie
GoalToKickOff MyFailedKickIn
MyFreeKickToGoalieCatchorGK
MyFreeKickToOff MyFreeKickToOut
MyGoalKickFault MyFreeKickToBackPass
TheirApparentKickOutSide
TheirApparentOffOrFreeKickFault
TheirApparentFightToOffOrFreeKickFault

B.2 RCSSMaze

The action template definition is simpler for RCSSMaze than for soccer. First we have we
have the features of the abstract state pairs.

Feature Description
WasGoal We were at the goal state
IsGoal We are at the goal state
WasBegin We were at the initial state
IsBegin We are at the initial state
HadBall The agent (or both agent and wall) had the ball
HasBall The agent (or both agent and wall) has the ball
WallHadBall The wall (or both agent and wall) had the ball
WallHasBall The wall (or both agent and wall) has the ball
BallIsInMyPen (same as soccer environment above)

Continued on next page
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Feature Description
BallMoveNone (same as soccer environment above)
BallMoveNear (same as soccer environment above)
BallMoveMid (same as soccer environment above)
BallMoveFar (same as soccer environment above)
BallMoveVeryFar (same as soccer environment above)

Next, we have the transition classes.

Class Matching Expression
ToGoal !WasGoal IsGoal
GoalSelfTran WasGoal IsGoal
GoalReset WasGoal IsBegin
BeginSelfTran WasBegin IsBegin
WallToBegin WallHadBall !HadBall !WasBegin IsBegin
FightToBegin WallHadBall HadBall !WasBegin IsBegin
DribbleToBegin !WallHadBall HadBall IsBegin
GotBallFromBegin WasBegin HasBall !WallHasBall
BeginToWall WasBegin WallHasBall
WallToWall !HadBall WallHadBall !HasBall WallHasBall
WallToFight !HadBall WallHadBall HasBall WallHasBall
WonFight HadBall WallHadBall HasBall !WallHasBall
LostFight HadBall WallHadBall !HasBall WallHasBall
ToFight HadBall !WallHadBall HasBall WallHasBall BallMoveNone
DribbleToFight HadBall !WallHadBall HasBall WallHasBall BallMoveNear
LostToWall HadBall !WallHadBall !HasBall WallHasBall BallMoveNone
DribbleLostToWall HadBall !WallHadBall !HasBall WallHasBall BallMoveNear
WallGaveToAgent !HadBall WallHadBall HasBall !WallHasBall
StationaryFightContinue HadBall WallHadBall HasBall WallHasBall BallMoveNone
MobileFightContinue HadBall WallHadBall HasBall WallHasBall BallMoveNear
WallToNearBegin !HadBall WallHadBall HasBall !WallHasBall BallIsInMyPen
MidKickToWall HadBall !WallHadBall !HasBall WallHasBall BallMoveMid
FarKickToWall HadBall !WallHadBall !HasBall WallHasBall BallMoveFar
MidKickToFight HadBall !WallHadBall HasBall WallHasBall BallMoveMid
FarKickToFight HadBall !WallHadBall HasBall WallHasBall BallMoveFar
OtherAgentLost !WallHadBall WallHasBall
HoldBall HadBall HasBall BallMoveNone

Continued on next page
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Class Matching Expression
DribbleBall HadBall HasBall BallMoveNear
MidDribbleBall HadBall HasBall BallMoveMid
FarDribbleBall HadBall HasBall BallMoveFar

Finally, we combine these classes to define the action templates. Since we are still
using CLang, the actions are quite similar to the soccer actions.

Action Primary Transition Classes Secondary Transition Classes
HoldBall HoldBall ToFight LostToWall
DribbleTo GotBallFromBegin BeginToWall

DribbleToFight DribbleLostToWall DribbleBall
MidDribbleBall FarDribbleBall
MidKickToWall FarKickToWall
MidKickToFight FarKickToFight

HoldBall ToFight LostToWall
DribbleToFight
DribbleLostToWall
MidKickToWall
FarKickToWall
MidKickToFight
FarKickToFight

Shoot ToGoal
TheirAct WallToBegin FightToBegin WallToWall

WallToFight WonFight LostFight
WallGaveToAgent StationaryFightContinue
MobileFightContinue WallToNearBegin

Null GoalSelfTran GoalReset BeginSelfTran
DribbleToBegin OtherAgentLost
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Appendix C

Source Code and Data Files

This thesis has been heavily experimental and has consequently produced a large amount
of data. Almost all source code used to run these the experiments is available at the the-
sis web pagehttp://www.cs.cmu.edu/~pfr/thesis/ . Since the complete data
files are about 94GB, they may not be available on the web page, but will be by request.

The web page also gives a more detailed list of the experimental data from this thesis.
Most, but not all, of the experiments are discussed in the main text. Roughly, the data
breaks down into several categories:

• Experiments in predator-prey environment (see Chapter 3)

• Experiments recreating the coach competition from RoboCup 2001 (see Section 5.2.3)

• Experiments after RoboCup 2003 and 2004, focused on (but not exclusively) the
MDP learning (see Chapter 4)

• Experiments in the RCSSMaze environment (see Section 4.4.3)

• Data from the MASTN experiments (see Chapter 6)
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Appendix D

Beginnings of a Formal Model of
Coaching

One of the goals of this thesis is to better define the coaching problem. As part of this
work, we developed some preliminary descriptive formal models of the coaching problem.
These models draw from other models of multi agent systems such as MMDP [Boutilier,
1999] and COM-MTDP [Pynadath and Tambe, 2002a].

These models are still somewhat preliminary. We believe that they do have descriptive
power, but we are not yet able to use these models to reason much about the coaching
problem.

D.1 Direct, General Model

This model is an extension of a single-agent MDP to include a coach. The world is fully
observable by both the coach and the agent, and the coach is coaching a single agent. The
communication is one way, with the coach talking to the agent, but not vice versa. The
coach’s only action is to communicate to the agent, and the coach does not directly affect
the transitions or rewards of the world.

Essentially no restriction is put on the format or meaning of the language between the
coach and agent.

Figure D.1 graphically overviews the model, showing how information will flow around.
The details of all the components are described below.

Our model is a triple of tuples. The first primarily describes the agent, the second de-
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Figure D.1: Graphical description of coach agent interaction in most general model
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scribes the coach, and the third is shared information or attributes:〈〈S,A〉, 〈L, ∆〉, 〈T,R,Y , Y, y0〉〉

S The set of states

A The set of actionsfor the agent

L The language set, the set of all things that a coach could say

∆ Gives the interval for advice giving for the coach. The meaning is that every∆ steps,
the coach gets to say something fromL.

T : S ×A× S → R The transition function. Given a state of the world and an agent
action, gives a probability distribution over next states.

R : S ×A → R The reward function

Y The set of advice summary states. The advice summary state is designed to summarize
in some fashion the entire history of communication from coach to agent (elements
of L). In general, this could be the entire communication history. However, the
summary state could be used to represent such commands as “forget this earlier
piece of advice.”

Y : Y × L× S → Y The language to advice summary interpretation function. This func-
tion is used to update the advice summary state given what the coach said (an ele-
ment ofL) and the current state (an element ofS). Note in particular that the advice
can be situated. That is, the current state when the advice is received can affect the
interpretation of the advice.

y0 ∈ Y The initial advice summary state.

Given these components, we can now describe fully how the world operates. The agent
and the coach both know the language to advice summary functionY and the current
advice summary stateyt−1 ∈ Y. We are in a state of the world (st ∈ S). If this is the first
time step or it has been∆ steps since the last time the coach talked, the coach usesyt−1

andst to pick something to say (lt ∈ L). Note that this means the the coach’s policy is
πc : Y × S∆ → L (the coach explicitly remembers the last∆ states). If the coach said
something, the language to advice summary function is used to compute the new summary
stateyt = Y (yt−1, lt, st) (both the coach and the agent can do this computation without
explicitly sharing anything butlt). If the coach did not say anything, thenyt = yt−1. The
agent then usesyt andst to pick an action fromA. Note that this means the agent’s policy
is πa : Y × S → A.
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The agent’s action determines a state transition (si+1) and reward (rt) as in a normal
MDP. Both the agent and coach then receive rewardrt.

To summarize, the history of the world here can be represented as a sequence of tuples
〈st, lt, yt, at, rt〉 where

st The state at timet

lt What the coach says at timet. This can be∅ to represent that nothing was said.

yt The advice summary state at timet (updated to includelt)

at The agent’s action at timet

rt The reward received at timet

Alternatively, this can be summarized with a diagram describing how the history vari-
ables evolve over time

-

-

�

w

N

yt−1 lt

at
Agent

Coach

st st+1

yt

rt

The separation between the coach and agent is meant to signify what variables the
coach and agent influence; the coach controls updates to the advice summary stateyt

through its choice of what to saylt. The agent chooses actionsat to update the statest.

Note that in the model described thus far, the coach is able to see the state and say
somethingbeforethe agent has to choose an action. A slight variation is to make the coach
say something and the agent act simultaneously. That is, when the agent is in a given state,
it does not get the hear the coach advice before having to decide on an action. This is
pictured here:
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D.1.1 Examples

This section contains instantiates the model to match some coaching environments we
have worked with.

Predator-Prey Continual Advice

This instantiates the model to match the predator-prey continual advice model as described
in Section 3.1.

S Location of the predator and preys on the grid world.

A {North, South, East, West, Stay}

T : S ×A× S → R This is the obvious thing with the prey moving randomly.

R : S ×A → R The action is ignored and any state where the prey is captured is re-
warded as described in the predator-prey paper.

L This is justA; the coach recommends actions.

Y This is justA; the last recommendation the coach made is the only thing remembered.

Y : Y × L× S → Y The advice summary state is just the last thing that the coach said:
Y (yt−1, lt, st) = lt

y0 ∈ Y It doesn’t matter what this is as it is never used.

∆ is 1; the coach can talk every step.
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Predator-Prey Limited Bandwidth

This instantiates the model to match the predator-prey with limited bandwidth as described
in Section 3.3.

S Location of the predator and preys on the grid world (as in previous).

A {North, South, East, West, Stay}

T : S ×A× S → R This is the obvious thing (prey move randomly).

R : S ×A → R The action is ignored and any state where the prey is captured is re-
warded as described in the predator-prey paper (same as before).

L The set is〈S,A〉K . That is, a sequence ofK (the parameter controlling the bandwidth)
state-action pairs.

Y The set of functionsS → A∪{∅}. This simply “remembers” one recommended action
for each state, or the null indicating that no advice has been received.

Y : Y × L× S → Y The sequence advice replaces the stored recommended action in the
natural way.

y0 ∈ Y Initialize to all nulls,∀s ∈ S, y0(s) = ∅

∆ is I, the interval when the coach can talk.

This is a bit trickier as we had to use the∆ parameter and have the agent remember
past advice.

D.2 A More Specific Model

While the model in Section D.1 does describe some coaching environments as shown in
Section D.1.1, it is not as useful as we would like. We want to use the model to develop
coaching algorithms that apply across domains. Note especially that in the previous model
there is a complete lack of commitment to the structure of the language setL, the ad-
vice summary setY, and, consequently, the structure of the language to advice summary
functionY .
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In this section, we present a more specific model which imposes more structure. This
is a strict specialization; all models of this type are models of the more general type.

The basic idea is to require that the language provides (sets of) goal states to the agent.
That is, the coach is giving the agent a goal, which is represented as a subset of the state
space with the meaning of “Please get to one of the states in this subset.” Over time, the
agent could be given several possible goals for a given state.

Our model is a triple of tuples. The first tuple is for the agent, the second if for the
coach, and the third is shared information:〈〈S,A〉, 〈L, ∆〉, 〈T,R, L〉〉

S The set of states (same as an MDP)

A The set of actionsfor the agent(same as an MDP)

L The language set, the set of all things that a coach could say. This is the same as before;
no constraints on the format.

∆ The interval at which the coach can talk (same as before).

T : S ×A× S → R The transition function. Given a state of the world and an agent
action, gives a probability distribution over next states (same as an MDP).

R : S ×A → R The reward function (same as an MDP)

L The language decoder function. This is a new part of the model. This function translates
elements ofL into goal states for particular states.

L : S × L → ((S → P(S))× (S → P(S))) (D.1)

In order words, each element ofL gives two functions on the state space. The first
means “For each of these states, here is a goal” and the second means “You should
no longer try to obtain this goal.” If the goal is the empty set, then that element of
the language says nothing about that state.

The advice is situated. The meaning of a piece of advice can change depending on
what state the agent is in when it hears it.

Since we claimed this is a strict specialization of the previous model, the reader may
be asking where the missing elements of the tuple are. We can define those in terms of the
given elements
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Y The set of advice summary states. This stores, for each state, a set of goals, where each
goal is represented as a subset of the state space.

Y := {y | y : S → P(P(S))} (D.2)

Y : Y × L× S → Y The language to advice summary interpretation function. In order
to write this down precisely, we are going to define two new operations on functions
to make things simpler (yes, believe it or not, this is simpler).

First let’s defineX ⊕ Y . Intuitively, this is a function set addition; add the output of
one function the output of a second function. The input types are (for some setsA
andB) X : A → P(B) andY : A → B. The return is of typeA → P(B). Then,
∀z ∈ A:

(X ⊕ Y )(z) =

{
X(z) ∪ {Y (z)} if Y (z) 6= ∅
X(z) o.w

(D.3)

The short story is that the output of the functionsX andY are merged; the new
functions returns, for each input, everything thatX andY did.

Now we defineX 	 Y , Intuitively, this is a function set subtraction; remove the
output of one function from output of a second function. This is the same as above
except:

(X 	 Y )(z) =

{
X(z) \ {Y (z)} if Y (z) 6= ∅
X(z) o.w

(D.4)

Basically, instead of adding the output, the new function returns, for each input,
everything thatX did thatY did not.

Now we will defineY . Given the previous summary stateyt−1, the current coach
utterancelt, and the current statest, we will describe the next summary stateyt (the
return ofY ), using the new⊕ and	 operators, (withA = S andB = P(S)). A
is the function describing what goals to add andD is the function describing what
goals to delete.

〈A, D〉 := L(st, lt) (D.5)

yt = (yt−1 ⊕ A)	D (D.6)

y0 ∈ Y The initial advice summary state.∀s ∈ S, y0(s) = ∅

The math here is not very pretty, but the idea is not that complicated. The coach is
advising goals to the agent. A goal is simply a subset of states, with the meaning of “I
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advise getting to one of those states.” The agent is simply remembering (with the setY)
what goals the coach has provided for each state. The language decoder translates each
language utterance into goals to add and remove for various states of the world.

Several final points should be made about this model:

• How/how long does the agent remember what was advised by the coach in previous
states?

• We still have not restricted the format ofL at all, except that each token must have
a particular interpretation. However, any algorithm that works on this sort of model
will be forced to iterate over the entire language setL, which has the potential of
being quite large. A more informative model needs to say something about whatL
looks like. Alternatively, it could also be effective if something could be learned or
summarized about the setL once and then used.

D.2.1 Example: Abstract States

One natural way for a coach to communicate about the world is in terms of abstract states.
This section will develop the model more fully for a language that can speak in terms of
abstract states.

First, we’ll define the set̃S as the set of abstract states. Two functionsAbs andSpec
(abstraction and specialization) will define the relationship betweenS̃ andS.

Abs : S → S̃ each state has an abstract state (D.7)

Spec : S̃ → P(S) Spec(s̃) = {s ∈ S|Abs(s) = s̃} (D.8)

The parts of the model impacted areL, L, Y, andY .

L In general, we could make no restriction on this set. It may be an interesting model to
say that the coach can, for every abstract state define any other abstract state as a
goal. This restriction would create a more structured language set.

L We will define a functioñL which decodes the language into abstract states.

L̃ : L →
(
〈S̃, S̃〉 × 〈S̃, S̃〉

)
(D.9)

The first tuple represents the advice, “If you are in the first (abstract) state, your goal
is to get to the second abstract state.” The second tuple is the removal of advice.
This can be translated toL in the natural way.
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Y The advice summary states can be simplified somewhat

Y := {y | y : S̃ → P(S̃)} (D.10)

Y This is defined in the natural way which we will not write out here.

D.2.2 Agent Ability

One of the challenges of the coaching problem is to learn about and adapt to the agents
being coached. This section covers some preliminary thoughts about how this idea fits into
this formal model. The ideas here are in general less developed than in the other sections.

Let’s start by making some simplifying assumptions. Assume that the coach can and
will only provide one goal state for each state of the world. Depending on the structure of
the language, this may or may not be possible.

Second, we assume that the agent works on the given goal for a state until that goal
is achieved. The problem of when goals are reevaluated is a very tricky one, and for the
moment we will just ignore it.

A model of an agent can then be, for each state and given goal, the expected time to
reach a goal state, the probability distribution over goal states, and the expected reward
obtained along the way.

Formally, we can have agent modelM as a function:

M : S × P(S) → R× Pr(S)× R (D.11)

wherePr represents the set of probability distributions over its argument.

If the agent is not learning, this agent model has fixed values. The agent model and
world dynamics can be used to establish the value of an advice summary state. If the
coach can calculate the best advice summary state, it should be able to calculate a series
of language utterances to transform the advice summary state.

D.3 Adding Multiple Agents

There are a variety of models to capture multi-agent systems. The model we present here
follows the DEC-MDP [Bernstein et al., 2000]. Each agent will have a state and the global
state of the world (which the coach will see) is determined by the conjunction of all the
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agents’ states. We assume that the coach has broadcast communication with the agents
and that the agents do not communicate among themselves.

We will present the model based on the general model presented in Section D.1. How-
ever, the specification in Section D.2 would apply equally well to this multi-agent model.

The model is a triple of tuples. First is for the agent, second is shared, and the third is
for the coach:〈〈〈S1,A1〉, . . . , 〈Sn,An〉〉, 〈L, ∆〉, 〈n, T,R,Y , Y, y0〉〉

Si Each agenti has a local state space. DefineS := ∪Si.

Ai Each agenti has a set of actions. Define the joint action spaceA := ∪Ai.

n The number of agents.

T : S ×A× S → R The transition function. Given a joint state of the world and a joint
action of all the agents, gives a probability distribution over next states.

R : S ×A → R The reward function, which is determined by the joint state and joint
action.

Y The set of advice summary states (same as for single agent model).

Y : Y × L → Y The language to advice summary interpretation function. Note that we
have removed the dependence uponS; the agents may not know the complete world
state, so the advice interpretation can not depend upon it.

y0 ∈ Y The initial advice summary state (same as for single agent model).

L The language set, the set of all things that a coach could say (same as for single agent
model).

∆ The interval at which the coach can talk.

We will usesi
t to represent the local state of agenti at timet, and similarly with actions.

Let st = ∪si
t.

We can now describe how the world evolves. The agent and the coach both know the
current advice summary stateyt−1 ∈ Y. We are in a state of the world (st = ∪si

t ∈ S).
The coach usesyt−1 andst (joint state of all agents) to pick something to say (lt ∈ L).
Note that this means the the coach’s policy isπc : Y × S → L. The language to advice
summary function is used to compute the new summary stateyt = Y (yt−1, lt) (the coach
and every agent can do this computations without explicitly sharing anything butlt). Each
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agenti then usesyt andsi
t to pick an action fromAi. Note that this means the agent’s

policy isπi
a : Y × Si → Ai.

The agents’ actions (at = ∪ai
t) determines a state transition (si+1) and reward (rt).

Both the agents and coach then receive rewardrt.

To summarize, the history of the world here can be represented as a sequence of tuples
〈st, lt, yt, at, rt〉 where

st = ∪si
t The state at timet. The joint statest is determined by the agents’ local statessi

t.

lt What the coach says at timet. ∅ can be used represent that the coach could not say
anything.

yt The advice summary state at timet (updated to includelt)

at = ∪ai
t The agents’ actions at timet

rt The reward received at timet

A diagram describing how the history variables evolve over time in Figure D.2.

D.4 Future Extensions

While we believe these models are progress, there is much that could be added:

• Agents talking to the coach. All models assume unidirectional (explicit) communi-
cation.

• There are no time-delayed messages. This allows to coach to have an impact simply
by telling the agent what to do right now or what the state of the world is (in the
multi-agent case).

• Our more specialized model no longer allows the coach to talk about doing specific
actions. How much of a restriction is this? One can certainly come up with domains
where this is a problem (an agent has two actions which can go to the same states,
but with different probabilities).

• The more specific model does not allow the coach to say things like “State 1 is better
than state 2 which is better than state 3.”
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• It might be nice to characterize a language based on the structure provided. For
example, you can characterize the “granularity” of a language (for either states or
goals) in terms how small a set of states can be used. Also, an “options” function
could say how many different goals the language provides you for each state.

Characterizations such as these could be very useful for classifying languages and
developing and/or analyzing algorithms.
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